Data-driven multifidelity topology design with multi-channel variational auto-encoder for concurrent optimization of multiple design variable fields

The objective of this study is to establish a gradient-free topology optimization framework that facilitates more global solution searches to avoid entrapping in undesirable local optima, especially in problems with strong non-linearity. The framework utilizes a data-driven multifidelity topology de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Kawabe, Hiroki, Yaji, Kentaro, Aoki, Yuichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to establish a gradient-free topology optimization framework that facilitates more global solution searches to avoid entrapping in undesirable local optima, especially in problems with strong non-linearity. The framework utilizes a data-driven multifidelity topology design, where solution candidates resulting from low-fidelity optimization problems are iteratively updated by a variational auto-encoder (VAE) and high-fidelity (HF) evaluation. A key step in the solution update involves constructing HF models by extruding VAE-generated material distributions to a constant thickness (the HF modeling parameter) across all candidates, which limits exploration of the parameter space and requires extensive parametric studies outside the optimization loop. To achieve comprehensive optimization in a single run, we propose a multi-channel image data architecture that stores material distributions and HF modeling parameters in separate channels, allowing simultaneous optimization of the HF parameter space. We demonstrated the efficacy of the proposed framework by solving a maximum stress minimization problem, characterized by strong non-linearity due to its minimax formulation.
ISSN:2331-8422