Basic results for fractional anisotropic spaces and applications: Basic results for fractional anisotropic spaces and applications

In this paper, we introduce a new space that generalizes the ϕ -Hilfer space with the ξ ( · ) -Laplacian operator, denoted ( ϕ , ξ ( · ) ) -HFDS. We refer to this new space as the ϕ -fractional space with anisotropic ξ → ( · ) -Laplacian operator, abbreviated as ( ϕ , ξ → ( · ) ) -HFDAS. We prove th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2024-12, Vol.15 (4), Article 71
Hauptverfasser: Sousa, J. Vanterler da C., Elhoussain, Arhrrabi, Hamza, El-Houari, Tavares, Leandro S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new space that generalizes the ϕ -Hilfer space with the ξ ( · ) -Laplacian operator, denoted ( ϕ , ξ ( · ) ) -HFDS. We refer to this new space as the ϕ -fractional space with anisotropic ξ → ( · ) -Laplacian operator, abbreviated as ( ϕ , ξ → ( · ) ) -HFDAS. We prove that ( ϕ , ξ → ( · ) ) -HFDAS is a separable, and reflexive Banach space. Furthermore, we extend some well-known properties and embedding results of the ( ϕ , ξ ( · ) ) -HFDS space to ( ϕ , ξ → ( · ) ) -HFDAS. Moreover, we illustrate an application of ( ϕ , ξ → ( · ) ) -HFDAS by solving a differential equation via variational methods.
ISSN:1662-9981
1662-999X
DOI:10.1007/s11868-024-00641-y