OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in obstetrics & gynecology 2024-09, Vol.64 (S1), p.12-12
Hauptverfasser: Barcroft, J., Linton‐Reid, K., Munaretto, M., Fantauzzi, M., Kim, J., Murugesu, S., Parker, N., Kyriacou, C., Novak, A.M., Pikovsky, M., Cooper, N., Lee, S., Savelli, L., Thomson, A.R., Yazbek, J., Stalder, C., Bharwani, N., Posma, J., Timmerman, D., Al‐Memar, M., Landolfo, C., Saso, S., Aboagye, E., Bourne, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue S1
container_start_page 12
container_title Ultrasound in obstetrics & gynecology
container_volume 64
creator Barcroft, J.
Linton‐Reid, K.
Munaretto, M.
Fantauzzi, M.
Kim, J.
Murugesu, S.
Parker, N.
Kyriacou, C.
Novak, A.M.
Pikovsky, M.
Cooper, N.
Lee, S.
Savelli, L.
Thomson, A.R.
Yazbek, J.
Stalder, C.
Bharwani, N.
Posma, J.
Timmerman, D.
Al‐Memar, M.
Landolfo, C.
Saso, S.
Aboagye, E.
Bourne, T.
description
doi_str_mv 10.1002/uog.27748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3102049360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102049360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1028-65910644839bca17beac24ba5bafc241d5f812c0acbab85c5f6eefda267dc6573</originalsourceid><addsrcrecordid>eNp1kM9u2zAMxoWhBZa2O-wNBOzUgxPKf2R7tyLo0gEB0kNzNmiZShQ4UibZbXPbIxR9xD7JtGVAT72QBPnjR_Bj7KuAqQBIZ6PbTNOyzKtPbCJyWSdQQnHGJlBLSEpZp5_ZRQg7AJB5JifsdTWHYgriO7_3LhxIDeaR-CP2psPBOMud5mg52e7t98vgYogl36PaGku8J_TW2E1stxgoDlxHPdfO82FLXPUYgtFGvUt1lp6xjwIhUOBjiMt87AePwVm38XjYHq_YucY-0Jf_-ZKtf9w-zO-S5Wrxc36zTJSAtEpkUYv4RF5ldatQlC2hSvMWixZ1LERX6EqkClC12FaFKrQk0h2msuyULMrskn076R68-zVSGJqdG72NJ5ssXoC8ziRE6vpEqehP8KSbgzd79MdGQPPX8iZa3vyzPLKzE_tkejp-DDbr1eK08QcBjoiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102049360</pqid></control><display><type>article</type><title>OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barcroft, J. ; Linton‐Reid, K. ; Munaretto, M. ; Fantauzzi, M. ; Kim, J. ; Murugesu, S. ; Parker, N. ; Kyriacou, C. ; Novak, A.M. ; Pikovsky, M. ; Cooper, N. ; Lee, S. ; Savelli, L. ; Thomson, A.R. ; Yazbek, J. ; Stalder, C. ; Bharwani, N. ; Posma, J. ; Timmerman, D. ; Al‐Memar, M. ; Landolfo, C. ; Saso, S. ; Aboagye, E. ; Bourne, T.</creator><creatorcontrib>Barcroft, J. ; Linton‐Reid, K. ; Munaretto, M. ; Fantauzzi, M. ; Kim, J. ; Murugesu, S. ; Parker, N. ; Kyriacou, C. ; Novak, A.M. ; Pikovsky, M. ; Cooper, N. ; Lee, S. ; Savelli, L. ; Thomson, A.R. ; Yazbek, J. ; Stalder, C. ; Bharwani, N. ; Posma, J. ; Timmerman, D. ; Al‐Memar, M. ; Landolfo, C. ; Saso, S. ; Aboagye, E. ; Bourne, T.</creatorcontrib><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27748</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Machine learning</subject><ispartof>Ultrasound in obstetrics &amp; gynecology, 2024-09, Vol.64 (S1), p.12-12</ispartof><rights>The Authors 2024. © Ultrasound in Obstetrics &amp; Gynecology</rights><rights>Copyright © 2024 ISUOG. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.27748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.27748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Barcroft, J.</creatorcontrib><creatorcontrib>Linton‐Reid, K.</creatorcontrib><creatorcontrib>Munaretto, M.</creatorcontrib><creatorcontrib>Fantauzzi, M.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Murugesu, S.</creatorcontrib><creatorcontrib>Parker, N.</creatorcontrib><creatorcontrib>Kyriacou, C.</creatorcontrib><creatorcontrib>Novak, A.M.</creatorcontrib><creatorcontrib>Pikovsky, M.</creatorcontrib><creatorcontrib>Cooper, N.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Savelli, L.</creatorcontrib><creatorcontrib>Thomson, A.R.</creatorcontrib><creatorcontrib>Yazbek, J.</creatorcontrib><creatorcontrib>Stalder, C.</creatorcontrib><creatorcontrib>Bharwani, N.</creatorcontrib><creatorcontrib>Posma, J.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Al‐Memar, M.</creatorcontrib><creatorcontrib>Landolfo, C.</creatorcontrib><creatorcontrib>Saso, S.</creatorcontrib><creatorcontrib>Aboagye, E.</creatorcontrib><creatorcontrib>Bourne, T.</creatorcontrib><title>OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography</title><title>Ultrasound in obstetrics &amp; gynecology</title><subject>Machine learning</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9u2zAMxoWhBZa2O-wNBOzUgxPKf2R7tyLo0gEB0kNzNmiZShQ4UibZbXPbIxR9xD7JtGVAT72QBPnjR_Bj7KuAqQBIZ6PbTNOyzKtPbCJyWSdQQnHGJlBLSEpZp5_ZRQg7AJB5JifsdTWHYgriO7_3LhxIDeaR-CP2psPBOMud5mg52e7t98vgYogl36PaGku8J_TW2E1stxgoDlxHPdfO82FLXPUYgtFGvUt1lp6xjwIhUOBjiMt87AePwVm38XjYHq_YucY-0Jf_-ZKtf9w-zO-S5Wrxc36zTJSAtEpkUYv4RF5ldatQlC2hSvMWixZ1LERX6EqkClC12FaFKrQk0h2msuyULMrskn076R68-zVSGJqdG72NJ5ssXoC8ziRE6vpEqehP8KSbgzd79MdGQPPX8iZa3vyzPLKzE_tkejp-DDbr1eK08QcBjoiV</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Barcroft, J.</creator><creator>Linton‐Reid, K.</creator><creator>Munaretto, M.</creator><creator>Fantauzzi, M.</creator><creator>Kim, J.</creator><creator>Murugesu, S.</creator><creator>Parker, N.</creator><creator>Kyriacou, C.</creator><creator>Novak, A.M.</creator><creator>Pikovsky, M.</creator><creator>Cooper, N.</creator><creator>Lee, S.</creator><creator>Savelli, L.</creator><creator>Thomson, A.R.</creator><creator>Yazbek, J.</creator><creator>Stalder, C.</creator><creator>Bharwani, N.</creator><creator>Posma, J.</creator><creator>Timmerman, D.</creator><creator>Al‐Memar, M.</creator><creator>Landolfo, C.</creator><creator>Saso, S.</creator><creator>Aboagye, E.</creator><creator>Bourne, T.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>202409</creationdate><title>OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography</title><author>Barcroft, J. ; Linton‐Reid, K. ; Munaretto, M. ; Fantauzzi, M. ; Kim, J. ; Murugesu, S. ; Parker, N. ; Kyriacou, C. ; Novak, A.M. ; Pikovsky, M. ; Cooper, N. ; Lee, S. ; Savelli, L. ; Thomson, A.R. ; Yazbek, J. ; Stalder, C. ; Bharwani, N. ; Posma, J. ; Timmerman, D. ; Al‐Memar, M. ; Landolfo, C. ; Saso, S. ; Aboagye, E. ; Bourne, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1028-65910644839bca17beac24ba5bafc241d5f812c0acbab85c5f6eefda267dc6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barcroft, J.</creatorcontrib><creatorcontrib>Linton‐Reid, K.</creatorcontrib><creatorcontrib>Munaretto, M.</creatorcontrib><creatorcontrib>Fantauzzi, M.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Murugesu, S.</creatorcontrib><creatorcontrib>Parker, N.</creatorcontrib><creatorcontrib>Kyriacou, C.</creatorcontrib><creatorcontrib>Novak, A.M.</creatorcontrib><creatorcontrib>Pikovsky, M.</creatorcontrib><creatorcontrib>Cooper, N.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Savelli, L.</creatorcontrib><creatorcontrib>Thomson, A.R.</creatorcontrib><creatorcontrib>Yazbek, J.</creatorcontrib><creatorcontrib>Stalder, C.</creatorcontrib><creatorcontrib>Bharwani, N.</creatorcontrib><creatorcontrib>Posma, J.</creatorcontrib><creatorcontrib>Timmerman, D.</creatorcontrib><creatorcontrib>Al‐Memar, M.</creatorcontrib><creatorcontrib>Landolfo, C.</creatorcontrib><creatorcontrib>Saso, S.</creatorcontrib><creatorcontrib>Aboagye, E.</creatorcontrib><creatorcontrib>Bourne, T.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barcroft, J.</au><au>Linton‐Reid, K.</au><au>Munaretto, M.</au><au>Fantauzzi, M.</au><au>Kim, J.</au><au>Murugesu, S.</au><au>Parker, N.</au><au>Kyriacou, C.</au><au>Novak, A.M.</au><au>Pikovsky, M.</au><au>Cooper, N.</au><au>Lee, S.</au><au>Savelli, L.</au><au>Thomson, A.R.</au><au>Yazbek, J.</au><au>Stalder, C.</au><au>Bharwani, N.</au><au>Posma, J.</au><au>Timmerman, D.</au><au>Al‐Memar, M.</au><au>Landolfo, C.</au><au>Saso, S.</au><au>Aboagye, E.</au><au>Bourne, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography</atitle><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle><date>2024-09</date><risdate>2024</risdate><volume>64</volume><issue>S1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/uog.27748</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7692
ispartof Ultrasound in obstetrics & gynecology, 2024-09, Vol.64 (S1), p.12-12
issn 0960-7692
1469-0705
language eng
recordid cdi_proquest_journals_3102049360
source Wiley Online Library Journals Frontfile Complete
subjects Machine learning
title OC05.01: Prospective validation of an end‐to‐end machine learning‐based model for the classification of adnexal masses using ultrasonography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OC05.01:%20Prospective%20validation%20of%20an%20end%E2%80%90to%E2%80%90end%20machine%20learning%E2%80%90based%20model%20for%20the%20classification%20of%20adnexal%20masses%20using%20ultrasonography&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Barcroft,%20J.&rft.date=2024-09&rft.volume=64&rft.issue=S1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27748&rft_dat=%3Cproquest_cross%3E3102049360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102049360&rft_id=info:pmid/&rfr_iscdi=true