Consortia of Streptomyces spp. triggers defense/PAMP genes during the interaction of Groundnut budnecrosis orthotospovirus in tomato

In the present study, Streptomyces spp. were isolated, characterized, and the efficacy was tested against Groundnut bud necrosis orthotospovirus (GBNV) in tomato. Among the three inoculation methods viz., pre-, post-, and simultaneous inoculation, tested for antiviral efficacy, pre-inoculation spray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:3 Biotech 2024-09, Vol.14 (9)
Hauptverfasser: Dev, A. S. Rahul, Harish, S., Karthikeyan, G., Nivedha, M., Sangeetha, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, Streptomyces spp. were isolated, characterized, and the efficacy was tested against Groundnut bud necrosis orthotospovirus (GBNV) in tomato. Among the three inoculation methods viz., pre-, post-, and simultaneous inoculation, tested for antiviral efficacy, pre-inoculation spray of the three Streptomyces spp. viz., Streptomyces mutabilis, Streptomyces rochei, and Streptomyces chrestomyceticus (SAT1, SAT4, and STR2) recorded the least disease severity index (DSI) of GBNV in tomato. In the pot culture, seed treatment of liquid consortium of three Streptomyces spp. @ 2 ml/g of seeds along with seedling dip at 10 ml/lit followed by soil drenching at 10 ml/lit on 7 days after transplanting (DAT) and foliar application at 0.5% on 15 DAT, 30 DAT, and 45 DAT recorded the least GBNV infection of 15% DSI and 16.67% DSI in trial I and II respectively. Besides, under field conditions, the disease incidence was reduced to 14.44% recording a higher yield of 76.67 t/ha in the treated plants against 63.99 t/ha in control. Upregulation of defense genes viz., PR1, PR2, PR6, WRKY, MAPKK, and NPR1 during tripartite interaction between tomato, Streptomyces , and GBNV was analyzed by qRTPCR, indicating that the consortia could decrease the virus severity through induced systemic resistance pathways. Thus, it is concluded that Streptomyces spp. can be used for the management of GBNV in tomato.
ISSN:2190-572X
2190-5738
DOI:10.1007/s13205-024-04030-6