Optimal Regularity for Fully Nonlinear Nonlocal Equations with Unbounded Source Terms

We prove optimal regularity estimates for viscosity solutions to a class of fully nonlinear nonlocal equations with unbounded source terms. More precisely, depending on the integrability of the source term \(f \in L^p(B_1)\), we establish that solutions belong to classes ranging from \(C^{\sigma-d/p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: dos Prazeres, Disson S, Santos, Makson S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove optimal regularity estimates for viscosity solutions to a class of fully nonlinear nonlocal equations with unbounded source terms. More precisely, depending on the integrability of the source term \(f \in L^p(B_1)\), we establish that solutions belong to classes ranging from \(C^{\sigma-d/p}\) to \(C^\sigma\), at critical thresholds. We use approximation techniques and Liouville-type arguments. These results represent a novel contribution, providing the first such estimates in the context of not necessarily concave nonlocal equations.
ISSN:2331-8422