Optimal Regularity for Fully Nonlinear Nonlocal Equations with Unbounded Source Terms
We prove optimal regularity estimates for viscosity solutions to a class of fully nonlinear nonlocal equations with unbounded source terms. More precisely, depending on the integrability of the source term \(f \in L^p(B_1)\), we establish that solutions belong to classes ranging from \(C^{\sigma-d/p...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove optimal regularity estimates for viscosity solutions to a class of fully nonlinear nonlocal equations with unbounded source terms. More precisely, depending on the integrability of the source term \(f \in L^p(B_1)\), we establish that solutions belong to classes ranging from \(C^{\sigma-d/p}\) to \(C^\sigma\), at critical thresholds. We use approximation techniques and Liouville-type arguments. These results represent a novel contribution, providing the first such estimates in the context of not necessarily concave nonlocal equations. |
---|---|
ISSN: | 2331-8422 |