A Pair of Diophantine Equations Involving the Fibonacci Numbers

Let \(a, b\in \mathbb{N}\) be relatively prime. Previous work showed that exactly one of the two equations \(ax + by = (a-1)(b-1)/2\) and \(ax + by + 1 = (a-1)(b-1)/2\) has a nonnegative, integral solution; furthermore, the solution is unique. Let \(F_n\) be the \(n\)th Fibonacci number. When \((a,b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Chen, Xuyuan, Chu, Hung Viet, Kesumajana, Fadhlannafis K, Kim, Dongho, Li, Liran, Miller, Steven J, Yang, Junchi, Yao, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(a, b\in \mathbb{N}\) be relatively prime. Previous work showed that exactly one of the two equations \(ax + by = (a-1)(b-1)/2\) and \(ax + by + 1 = (a-1)(b-1)/2\) has a nonnegative, integral solution; furthermore, the solution is unique. Let \(F_n\) be the \(n\)th Fibonacci number. When \((a,b) = (F_n, F_{n+1})\), it is known that there is an explicit formula for the unique solution \((x,y)\). We establish formulas to compute the solution when \((a,b) = (F_n^2, F_{n+1}^2)\) and \((F_n^3, F_{n+1}^3)\), giving rise to some intriguing identities involving Fibonacci numbers. Additionally, we construct a different pair of equations that admits a unique positive (instead of nonnegative), integral solution.
ISSN:2331-8422