Practical techniques for high precision measurements on near-term quantum hardware: a Case Study in Molecular Energy Estimation
Achieving high-precision measurements on near-term quantum devices is critical for advancing quantum computing applications. In this paper, we explore several practical techniques to enhance measurement accuracy using randomized measurements, focusing on minimizing shot overhead, circuit overhead, m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Achieving high-precision measurements on near-term quantum devices is critical for advancing quantum computing applications. In this paper, we explore several practical techniques to enhance measurement accuracy using randomized measurements, focusing on minimizing shot overhead, circuit overhead, measurement noise, and time-dependent measurement noise. Our approach leverages locally biased random measurements to reduce shot overhead, in addition to repeated settings and parallel quantum detector tomography to reduce circuit overhead and mitigate measurement noise. Additionally, we employ a blended scheduling technique to mitigate time-dependent measurement noise. We demonstrate the effectiveness of these techniques through a case study on the molecular energy estimation of the BODIPY molecule using the Hartree-Fock state on an IBM Eagle r3 computer, showcasing significant improvements in measurement precision. These strategies pave the way for more reliable and accurate quantum computations, particularly in applications requiring precise molecular energy calculations. |
---|---|
ISSN: | 2331-8422 |