Friction of graphene on a substrate with a cavity defect
The frictional behavior of supported graphene is known to be influenced by the physical properties and surface morphologies of the underlying substrate. However, it is unclear how a surface defect on the substrate affects the friction of supported graphene, and it is even unknown how to define the d...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2024-09, Vol.67 (9), p.2834-2841 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The frictional behavior of supported graphene is known to be influenced by the physical properties and surface morphologies of the underlying substrate. However, it is unclear how a surface defect on the substrate affects the friction of supported graphene, and it is even unknown how to define the defect-induced friction force in this context. Here we conduct molecular dynamics (MD) simulations to investigate the friction between a square diamond slider and a graphene sheet supported by a copper substrate with a surface cavity defect. Our results demonstrate that the defect-induced friction exhibits a nonlinear increase with cavity size, while it decreases nonlinearly with slider size. We propose that the definition of defect-induced friction can be linked to the increase in friction work over the length of the slider, and is closely correlated to the defect-induced relative change in indentation depth and the ratio of the cavity area to the contact area. These findings provide a comprehensive evaluation of the impact of a substrate cavity defect on the friction of supported graphene and offer insights that may have broader implications for understanding defect-induced friction in other two-dimensional materials. |
---|---|
ISSN: | 1674-7321 1869-1900 |
DOI: | 10.1007/s11431-023-2634-9 |