A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3

This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2024-09, Vol.202 (3), p.1077-1100
Hauptverfasser: Fradi, Anis, Samir, Chafik, Adouani, Ines
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 3
container_start_page 1077
container_title Journal of optimization theory and applications
container_volume 202
creator Fradi, Anis
Samir, Chafik
Adouani, Ines
description This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.
doi_str_mv 10.1007/s10957-024-02473-8
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3100670493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100670493</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_wFPA8-ok2d0kx1q0CtWKH-eQZGd1S7u7JlvE_npTKwgzzBweZl4eQs4ZXDIAeRUZ6EJmwPNdS5GpAzJiRVq4kuqQjAA4zwQX-picxLgEAK1kPiIPE_qIX_TafmNsbEsnfR866z_o0NHZqnN2RRf90KybrR2arqWpnmywaxxCs8WKvmxCbT1G2rT0WZySo9quIp79zTF5u715nd5l88XsfjqZZ33KNGS-dpIVAhVg4byUVckLUTonVcVZzRR3rna51V45VMJjWWqGgmtkNVSYezEmF_u7KeznBuNglt0mtOmlEclHKSHXIlFiT8U-NO07hn-Kgdl5M3tvJjkzv96MEj88k2AY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100670493</pqid></control><display><type>article</type><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><source>Springer Nature - Complete Springer Journals</source><creator>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</creator><creatorcontrib>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</creatorcontrib><description>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-024-02473-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Bayesian analysis ; Calculus of Variations and Optimal Control; Optimization ; Clustering ; Engineering ; Gaussian process ; Global optimization ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Operations Research/Decision Theory ; Optimization ; Parameterization ; Riemann manifold ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2024-09, Vol.202 (3), p.1077-1100</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</cites><orcidid>0000-0003-0619-5040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-024-02473-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-024-02473-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fradi, Anis</creatorcontrib><creatorcontrib>Samir, Chafik</creatorcontrib><creatorcontrib>Adouani, Ines</creatorcontrib><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Clustering</subject><subject>Engineering</subject><subject>Gaussian process</subject><subject>Global optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Riemann manifold</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt_wFPA8-ok2d0kx1q0CtWKH-eQZGd1S7u7JlvE_npTKwgzzBweZl4eQs4ZXDIAeRUZ6EJmwPNdS5GpAzJiRVq4kuqQjAA4zwQX-picxLgEAK1kPiIPE_qIX_TafmNsbEsnfR866z_o0NHZqnN2RRf90KybrR2arqWpnmywaxxCs8WKvmxCbT1G2rT0WZySo9quIp79zTF5u715nd5l88XsfjqZZ33KNGS-dpIVAhVg4byUVckLUTonVcVZzRR3rna51V45VMJjWWqGgmtkNVSYezEmF_u7KeznBuNglt0mtOmlEclHKSHXIlFiT8U-NO07hn-Kgdl5M3tvJjkzv96MEj88k2AY</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fradi, Anis</creator><creator>Samir, Chafik</creator><creator>Adouani, Ines</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0619-5040</orcidid></search><sort><creationdate>20240901</creationdate><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><author>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Clustering</topic><topic>Engineering</topic><topic>Gaussian process</topic><topic>Global optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Riemann manifold</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fradi, Anis</creatorcontrib><creatorcontrib>Samir, Chafik</creatorcontrib><creatorcontrib>Adouani, Ines</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fradi, Anis</au><au>Samir, Chafik</au><au>Adouani, Ines</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>202</volume><issue>3</issue><spage>1077</spage><epage>1100</epage><pages>1077-1100</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-024-02473-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0619-5040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2024-09, Vol.202 (3), p.1077-1100
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_3100670493
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Bayesian analysis
Calculus of Variations and Optimal Control
Optimization
Clustering
Engineering
Gaussian process
Global optimization
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Operations Research/Decision Theory
Optimization
Parameterization
Riemann manifold
Theory of Computation
title A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Bayesian%20Approach%20to%20Global%20Optimization%20on%20Parametrized%20Surfaces%20in%20R3&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Fradi,%20Anis&rft.date=2024-09-01&rft.volume=202&rft.issue=3&rft.spage=1077&rft.epage=1100&rft.pages=1077-1100&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-024-02473-8&rft_dat=%3Cproquest_sprin%3E3100670493%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100670493&rft_id=info:pmid/&rfr_iscdi=true