A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3
This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propo...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2024-09, Vol.202 (3), p.1077-1100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 3 |
container_start_page | 1077 |
container_title | Journal of optimization theory and applications |
container_volume | 202 |
creator | Fradi, Anis Samir, Chafik Adouani, Ines |
description | This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method. |
doi_str_mv | 10.1007/s10957-024-02473-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3100670493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100670493</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt_wFPA8-ok2d0kx1q0CtWKH-eQZGd1S7u7JlvE_npTKwgzzBweZl4eQs4ZXDIAeRUZ6EJmwPNdS5GpAzJiRVq4kuqQjAA4zwQX-picxLgEAK1kPiIPE_qIX_TafmNsbEsnfR866z_o0NHZqnN2RRf90KybrR2arqWpnmywaxxCs8WKvmxCbT1G2rT0WZySo9quIp79zTF5u715nd5l88XsfjqZZ33KNGS-dpIVAhVg4byUVckLUTonVcVZzRR3rna51V45VMJjWWqGgmtkNVSYezEmF_u7KeznBuNglt0mtOmlEclHKSHXIlFiT8U-NO07hn-Kgdl5M3tvJjkzv96MEj88k2AY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100670493</pqid></control><display><type>article</type><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><source>Springer Nature - Complete Springer Journals</source><creator>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</creator><creatorcontrib>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</creatorcontrib><description>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-024-02473-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Bayesian analysis ; Calculus of Variations and Optimal Control; Optimization ; Clustering ; Engineering ; Gaussian process ; Global optimization ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Operations Research/Decision Theory ; Optimization ; Parameterization ; Riemann manifold ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2024-09, Vol.202 (3), p.1077-1100</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</cites><orcidid>0000-0003-0619-5040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-024-02473-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-024-02473-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fradi, Anis</creatorcontrib><creatorcontrib>Samir, Chafik</creatorcontrib><creatorcontrib>Adouani, Ines</creatorcontrib><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</description><subject>Applications of Mathematics</subject><subject>Bayesian analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Clustering</subject><subject>Engineering</subject><subject>Gaussian process</subject><subject>Global optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Riemann manifold</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt_wFPA8-ok2d0kx1q0CtWKH-eQZGd1S7u7JlvE_npTKwgzzBweZl4eQs4ZXDIAeRUZ6EJmwPNdS5GpAzJiRVq4kuqQjAA4zwQX-picxLgEAK1kPiIPE_qIX_TafmNsbEsnfR866z_o0NHZqnN2RRf90KybrR2arqWpnmywaxxCs8WKvmxCbT1G2rT0WZySo9quIp79zTF5u715nd5l88XsfjqZZ33KNGS-dpIVAhVg4byUVckLUTonVcVZzRR3rna51V45VMJjWWqGgmtkNVSYezEmF_u7KeznBuNglt0mtOmlEclHKSHXIlFiT8U-NO07hn-Kgdl5M3tvJjkzv96MEj88k2AY</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Fradi, Anis</creator><creator>Samir, Chafik</creator><creator>Adouani, Ines</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0619-5040</orcidid></search><sort><creationdate>20240901</creationdate><title>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</title><author>Fradi, Anis ; Samir, Chafik ; Adouani, Ines</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-cfb7153e80e5bc77d62536bb78d21f182bbfb4a9c8be83ce6691e329e1f0de4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Bayesian analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Clustering</topic><topic>Engineering</topic><topic>Gaussian process</topic><topic>Global optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Riemann manifold</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fradi, Anis</creatorcontrib><creatorcontrib>Samir, Chafik</creatorcontrib><creatorcontrib>Adouani, Ines</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fradi, Anis</au><au>Samir, Chafik</au><au>Adouani, Ines</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>202</volume><issue>3</issue><spage>1077</spage><epage>1100</epage><pages>1077-1100</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-024-02473-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0619-5040</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2024-09, Vol.202 (3), p.1077-1100 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_3100670493 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Bayesian analysis Calculus of Variations and Optimal Control Optimization Clustering Engineering Gaussian process Global optimization Mathematics Mathematics and Statistics Monte Carlo simulation Operations Research/Decision Theory Optimization Parameterization Riemann manifold Theory of Computation |
title | A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Bayesian%20Approach%20to%20Global%20Optimization%20on%20Parametrized%20Surfaces%20in%20R3&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Fradi,%20Anis&rft.date=2024-09-01&rft.volume=202&rft.issue=3&rft.spage=1077&rft.epage=1100&rft.pages=1077-1100&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-024-02473-8&rft_dat=%3Cproquest_sprin%3E3100670493%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100670493&rft_id=info:pmid/&rfr_iscdi=true |