A New Bayesian Approach to Global Optimization on Parametrized Surfaces in R3

This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2024-09, Vol.202 (3), p.1077-1100
Hauptverfasser: Fradi, Anis, Samir, Chafik, Adouani, Ines
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-024-02473-8