Light–Matter Entanglement in a Microcavity with a Quantum Well and Injected with Squeezed Light
We investigate the quantification of entanglement between the photonic and excitonic modes in a semiconductor microcavity injected with squeezed light. By deriving and subsequently establishing the solutions to the quantum Langevin equations, we quantify the transient entanglement and the steady-sta...
Gespeichert in:
Veröffentlicht in: | Journal of Russian laser research 2024-05, Vol.45 (3), p.268-277 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the quantification of entanglement between the photonic and excitonic modes in a semiconductor microcavity injected with squeezed light. By deriving and subsequently establishing the solutions to the quantum Langevin equations, we quantify the transient entanglement and the steady-state entanglement between the photonic and excitonic modes in the low-excitation regime. It turns out that the cavity mode and the exciton mode are entangled in both the weak and strong coupling regimes, and there is the entanglement between the cavity mode and the exciton mode even in the absence of direct coupling between them. Furthermore, though the transit entanglement increases with the squeeze parameter, it decreases with the initial average intensity of the cavity mode. Also, we demonstrate that, in the strong coupling regime, the steady-state entanglement grows with coupling strength while, in the weak coupling regime, it decreases. |
---|---|
ISSN: | 1071-2836 1573-8760 |
DOI: | 10.1007/s10946-024-10211-8 |