Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete

The chemical reaction between CO 2 and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO 2 (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and structures 2024-10, Vol.57 (8), Article 173
Hauptverfasser: Bernal, Susan A., Dhandapani, Yuvaraj, Elakneswaran, Yogarajah, Gluth, Gregor J. G., Gruyaert, Elke, Juenger, Maria C. G., Lothenbach, Barbara, Olonade, Kolawole A., Sakoparnig, Marlene, Shi, Zhenguo, Thiel, Charlotte, Van den Heede, Phillip, Vanoutrive, Hanne, von Greve-Dierfeld, Stefanie, De Belie, Nele, Provis, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical reaction between CO 2 and a blended Portland cement concrete, referred to as carbonation, can lead to reduced performance, particularly when concrete is exposed to elevated levels of CO 2 (i.e., accelerated carbonation conditions). When slight changes in concrete mix designs or testing conditions are adopted, conflicting carbonation results are often reported. The RILEM TC 281-CCC ‘ Carbonation of Concrete with Supplementary Cementitious Materials ’ has conducted a critical analysis of the standardised testing methodologies that are currently applied to determine carbonation resistance of concrete in different regions. There are at least 17 different standards or recommendations being actively used for this purpose, with significant differences in sample curing, pre-conditioning, carbonation exposure conditions, and methods used for determination of carbonation depth after exposure. These differences strongly influence the carbonation depths recorded and the carbonation coefficient values calculated. Considering the importance of accurately determining carbonation potential of concrete, not just for predicting their durability performance, but also for determining the amount of CO 2 that concrete can re-absorb during or after its service life, it is imperative to recognise the applicability and limitations of the results obtained from different tests. This will enable researchers and practitioners to adopt the most appropriate testing methodologies to evaluate carbonation resistance, depending on the purpose of the conclusions derived from such testing (e. g. materials selection, service life prediction, CO 2 capture potential).
ISSN:1359-5997
1871-6873
DOI:10.1617/s11527-024-02424-9