Group classification for one type of space-time fractional quasilinear parabolic equation

In this paper, we present the Lie symmetry analysis for the space-time fractional quasilinear parabolic equation. A group classification is then carried out by investigating the coefficient functions p ( t ,  x ,  u ), q ( t ,  x ,  u ) and s ( t ,  x ,  u ), which includes space-time fractional rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum Studies : Mathematics and Foundations 2024, Vol.11 (3), p.577-588
Hauptverfasser: Yu, Jicheng, Feng, Yuqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present the Lie symmetry analysis for the space-time fractional quasilinear parabolic equation. A group classification is then carried out by investigating the coefficient functions p ( t ,  x ,  u ), q ( t ,  x ,  u ) and s ( t ,  x ,  u ), which includes space-time fractional reaction-diffusion equation, space-time fractional Poisson equation, space-time fractional Black-Scholes equation and space-time fractional cubic Schrödinger equation. We obtain all the Lie symmetries admitted by these equations and use the group generators to reduce these fractional partial differential equations with Riemann-Liouville fractional derivative to some fractional ordinary differential equations with Erdélyi-Kober fractional derivative or Riemann-Liouville fractional derivative, thereby getting some exact solutions of the reduced equations.
ISSN:2196-5609
2196-5617
DOI:10.1007/s40509-024-00338-3