Group classification for one type of space-time fractional quasilinear parabolic equation
In this paper, we present the Lie symmetry analysis for the space-time fractional quasilinear parabolic equation. A group classification is then carried out by investigating the coefficient functions p ( t , x , u ), q ( t , x , u ) and s ( t , x , u ), which includes space-time fractional rea...
Gespeichert in:
Veröffentlicht in: | Quantum Studies : Mathematics and Foundations 2024, Vol.11 (3), p.577-588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present the Lie symmetry analysis for the space-time fractional quasilinear parabolic equation. A group classification is then carried out by investigating the coefficient functions
p
(
t
,
x
,
u
),
q
(
t
,
x
,
u
) and
s
(
t
,
x
,
u
), which includes space-time fractional reaction-diffusion equation, space-time fractional Poisson equation, space-time fractional Black-Scholes equation and space-time fractional cubic Schrödinger equation. We obtain all the Lie symmetries admitted by these equations and use the group generators to reduce these fractional partial differential equations with Riemann-Liouville fractional derivative to some fractional ordinary differential equations with Erdélyi-Kober fractional derivative or Riemann-Liouville fractional derivative, thereby getting some exact solutions of the reduced equations. |
---|---|
ISSN: | 2196-5609 2196-5617 |
DOI: | 10.1007/s40509-024-00338-3 |