Wong-Zakai Approximations for the Stochastic Landau-Lifshitz-Bloch Equation with Helicity

For temperatures below and beyond the Curie temperature, the stochastic Landau-Lifshitz-Bloch equation describes the evolution of spins in ferromagnetic materials. In this work, we consider the stochastic Landau-Lifshitz-Bloch equation driven by a real valued Wiener process and show Wong-Zakai type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2024-10, Vol.193 (1), p.4, Article 4
1. Verfasser: Gokhale, Soham Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For temperatures below and beyond the Curie temperature, the stochastic Landau-Lifshitz-Bloch equation describes the evolution of spins in ferromagnetic materials. In this work, we consider the stochastic Landau-Lifshitz-Bloch equation driven by a real valued Wiener process and show Wong-Zakai type approximations for the same. We consider non-zero contribution from the helicity term in the energy. First, using a Doss-Sussmann type transform, we convert the stochastic partial differential equation into a deterministic equation with random coefficients. We then show that the solution of the transformed equation depends continuously on the driving Wiener process. We then use this result, along with the properties of the said transform to show that the solution of the originally considered equation depends continuously on the driving Wiener process.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-024-00681-y