High-power diode laser spectrally narrowed with prism–etalon feedback

A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a peri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-09, Vol.95 (9)
1. Verfasser: Muller, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple method for reducing the linewidth of a diode laser while maintaining high output power is described. It is based on a dispersive prism and a thin etalon for retroreflective feedback. The etalon creates two weak external cavities that provide spectral selectivity that is periodic with a period equal to the etalon’s free spectral range. The method was applied to a multimode blue laser diode, which in the absence of feedback features a linewidth of several nanometers. The spectral properties of the laser were investigated for different etalon thicknesses and operating currents and tested in the presence of temperature fluctuations. With a SF11 equilateral uncoated prism near Brewster’s angle and a 0.3 mm-thick uncoated fused silica etalon, the linewidth was reduced 20-fold to 70 pm (3.6 cm−1) with an output power of 3 W at a current of 2.15 A. The largest diode current probed was 2.75 A, which resulted in a linewidth of 100 pm (5.1 cm−1) and an output power of 4 W. In contrast to the use of, for example, a volume Bragg grating, a high degree of flexibility is afforded as the same prism–etalon pair can be used across the visible and near infrared.
ISSN:0034-6748
1089-7623
1089-7623
DOI:10.1063/5.0203666