Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation

Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-09, Vol.12 (25), p.n/a
Hauptverfasser: Wang, Yingying, Li, Zhonglin, Li, Xianglin, Gao, Kangyu, Yin, Zhixiong, Liu, Wenjun, Zhong, Bo, Kan, Guangfeng, Wang, Xiaofei, Jiang, Jie, Shen, Zexiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced optical materials
container_volume 12
creator Wang, Yingying
Li, Zhonglin
Li, Xianglin
Gao, Kangyu
Yin, Zhixiong
Liu, Wenjun
Zhong, Bo
Kan, Guangfeng
Wang, Xiaofei
Jiang, Jie
Shen, Zexiang
description Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller than those of traditional bulky devices. However, phase manipulation by light propagating through atomic 2D materials is suppressed due to its sub‐nanometer thickness. Here, an approach is reported to realize reflection phase singularities by establishing a zero‐reflection point in a monolayer MoS2‐based multilayer system, which broadens topological study beyond polarization singularity. This is achieved through the creation of a multilayer Fabry‐Perot‐type interference, and a pronounced phase change in the reflected light is realized due to the high absorption of monolayer MoS2 in the studied wavelength range. As an application, a rapid, sensitive, and label‐free detection of SARS‐CoV‐2 (2019‐nCov) antigen is demonstrated with a detection limit of 10−12 M L−1 (62 pg ml−1) by using monolayer MoS2 based optical biosensor. In addition to offering a comprehensive study in phase singularity, efficient wavefront engineering based on the reflective system using materials is presented with atomic thickness which may greatly simplify optical architecture in flat optics, and promote its development toward compactness and integrated functions. Through the construction of a double‐dielectric layer/Si substrate, the creation of phase singularity by introducing zero‐reflection in monolayer MoS2 facilitates the fast and quantitative detection of infectious 2019‐nCov antigen. The topological phase singularity together with topological charge based on materials of atomic layers broadens the scope of flexible wavefront shaping beyond metastructures.
doi_str_mv 10.1002/adom.202400429
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3099982290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099982290</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2179-3419f9b70c0ea8488c215885092d2b36d034fe1b7849d31c067de80c2061a2003</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhpfSQsV67Xmh59jZ2dXsHMW2WlAs_Tgvm2QTIzFrN0rJv2-CRXqa9x0eZuBh7F7AWADgo838foyACkAhXbEBCppEAmJx_S_fslHT7ACgK5JUPGCLZVlsq5bPksaHpKwLvva1r2zrQpc-kOc-cMtXNhSOv7u8cumx9DV_29rGdUR2qmy_uGM3ua0aN_qbQ_b18vw5X0arzeJ1PltFBYqYIqkE5ZTEkIKzWmmdophoPQHCDBM5zUCq3Ikk1ooyKVKYxpnTkCJMhUUAOWQP57uH4L9PrjmanT-FuntpJBCRRqSeojP1U1auNYdQ7m1ojQDTyzK9LHORZWZPm_WlyV8w210z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099982290</pqid></control><display><type>article</type><title>Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yingying ; Li, Zhonglin ; Li, Xianglin ; Gao, Kangyu ; Yin, Zhixiong ; Liu, Wenjun ; Zhong, Bo ; Kan, Guangfeng ; Wang, Xiaofei ; Jiang, Jie ; Shen, Zexiang</creator><creatorcontrib>Wang, Yingying ; Li, Zhonglin ; Li, Xianglin ; Gao, Kangyu ; Yin, Zhixiong ; Liu, Wenjun ; Zhong, Bo ; Kan, Guangfeng ; Wang, Xiaofei ; Jiang, Jie ; Shen, Zexiang</creatorcontrib><description>Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller than those of traditional bulky devices. However, phase manipulation by light propagating through atomic 2D materials is suppressed due to its sub‐nanometer thickness. Here, an approach is reported to realize reflection phase singularities by establishing a zero‐reflection point in a monolayer MoS2‐based multilayer system, which broadens topological study beyond polarization singularity. This is achieved through the creation of a multilayer Fabry‐Perot‐type interference, and a pronounced phase change in the reflected light is realized due to the high absorption of monolayer MoS2 in the studied wavelength range. As an application, a rapid, sensitive, and label‐free detection of SARS‐CoV‐2 (2019‐nCov) antigen is demonstrated with a detection limit of 10−12 M L−1 (62 pg ml−1) by using monolayer MoS2 based optical biosensor. In addition to offering a comprehensive study in phase singularity, efficient wavefront engineering based on the reflective system using materials is presented with atomic thickness which may greatly simplify optical architecture in flat optics, and promote its development toward compactness and integrated functions. Through the construction of a double‐dielectric layer/Si substrate, the creation of phase singularity by introducing zero‐reflection in monolayer MoS2 facilitates the fast and quantitative detection of infectious 2019‐nCov antigen. The topological phase singularity together with topological charge based on materials of atomic layers broadens the scope of flexible wavefront shaping beyond metastructures.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202400429</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Biosensors ; Molybdenum disulfide ; Monolayers ; Multilayers ; one port single‐mode resonator ; Optics ; Phase modulation ; Reflection ; Singularities ; Thickness ; topological charge ; topological phase singularity ; Two dimensional materials ; Wave fronts ; Wave propagation ; zero‐reflection</subject><ispartof>Advanced optical materials, 2024-09, Vol.12 (25), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9182-335X ; 0000-0001-7432-7936 ; 0000-0002-1310-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202400429$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202400429$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Li, Zhonglin</creatorcontrib><creatorcontrib>Li, Xianglin</creatorcontrib><creatorcontrib>Gao, Kangyu</creatorcontrib><creatorcontrib>Yin, Zhixiong</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Kan, Guangfeng</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Jiang, Jie</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><title>Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation</title><title>Advanced optical materials</title><description>Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller than those of traditional bulky devices. However, phase manipulation by light propagating through atomic 2D materials is suppressed due to its sub‐nanometer thickness. Here, an approach is reported to realize reflection phase singularities by establishing a zero‐reflection point in a monolayer MoS2‐based multilayer system, which broadens topological study beyond polarization singularity. This is achieved through the creation of a multilayer Fabry‐Perot‐type interference, and a pronounced phase change in the reflected light is realized due to the high absorption of monolayer MoS2 in the studied wavelength range. As an application, a rapid, sensitive, and label‐free detection of SARS‐CoV‐2 (2019‐nCov) antigen is demonstrated with a detection limit of 10−12 M L−1 (62 pg ml−1) by using monolayer MoS2 based optical biosensor. In addition to offering a comprehensive study in phase singularity, efficient wavefront engineering based on the reflective system using materials is presented with atomic thickness which may greatly simplify optical architecture in flat optics, and promote its development toward compactness and integrated functions. Through the construction of a double‐dielectric layer/Si substrate, the creation of phase singularity by introducing zero‐reflection in monolayer MoS2 facilitates the fast and quantitative detection of infectious 2019‐nCov antigen. The topological phase singularity together with topological charge based on materials of atomic layers broadens the scope of flexible wavefront shaping beyond metastructures.</description><subject>Absorption</subject><subject>Biosensors</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>one port single‐mode resonator</subject><subject>Optics</subject><subject>Phase modulation</subject><subject>Reflection</subject><subject>Singularities</subject><subject>Thickness</subject><subject>topological charge</subject><subject>topological phase singularity</subject><subject>Two dimensional materials</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><subject>zero‐reflection</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rwkAQhpfSQsV67Xmh59jZ2dXsHMW2WlAs_Tgvm2QTIzFrN0rJv2-CRXqa9x0eZuBh7F7AWADgo838foyACkAhXbEBCppEAmJx_S_fslHT7ACgK5JUPGCLZVlsq5bPksaHpKwLvva1r2zrQpc-kOc-cMtXNhSOv7u8cumx9DV_29rGdUR2qmy_uGM3ua0aN_qbQ_b18vw5X0arzeJ1PltFBYqYIqkE5ZTEkIKzWmmdophoPQHCDBM5zUCq3Ikk1ooyKVKYxpnTkCJMhUUAOWQP57uH4L9PrjmanT-FuntpJBCRRqSeojP1U1auNYdQ7m1ojQDTyzK9LHORZWZPm_WlyV8w210z</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Wang, Yingying</creator><creator>Li, Zhonglin</creator><creator>Li, Xianglin</creator><creator>Gao, Kangyu</creator><creator>Yin, Zhixiong</creator><creator>Liu, Wenjun</creator><creator>Zhong, Bo</creator><creator>Kan, Guangfeng</creator><creator>Wang, Xiaofei</creator><creator>Jiang, Jie</creator><creator>Shen, Zexiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9182-335X</orcidid><orcidid>https://orcid.org/0000-0001-7432-7936</orcidid><orcidid>https://orcid.org/0000-0002-1310-7419</orcidid></search><sort><creationdate>20240901</creationdate><title>Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation</title><author>Wang, Yingying ; Li, Zhonglin ; Li, Xianglin ; Gao, Kangyu ; Yin, Zhixiong ; Liu, Wenjun ; Zhong, Bo ; Kan, Guangfeng ; Wang, Xiaofei ; Jiang, Jie ; Shen, Zexiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2179-3419f9b70c0ea8488c215885092d2b36d034fe1b7849d31c067de80c2061a2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Biosensors</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>one port single‐mode resonator</topic><topic>Optics</topic><topic>Phase modulation</topic><topic>Reflection</topic><topic>Singularities</topic><topic>Thickness</topic><topic>topological charge</topic><topic>topological phase singularity</topic><topic>Two dimensional materials</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><topic>zero‐reflection</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yingying</creatorcontrib><creatorcontrib>Li, Zhonglin</creatorcontrib><creatorcontrib>Li, Xianglin</creatorcontrib><creatorcontrib>Gao, Kangyu</creatorcontrib><creatorcontrib>Yin, Zhixiong</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>Zhong, Bo</creatorcontrib><creatorcontrib>Kan, Guangfeng</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Jiang, Jie</creatorcontrib><creatorcontrib>Shen, Zexiang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yingying</au><au>Li, Zhonglin</au><au>Li, Xianglin</au><au>Gao, Kangyu</au><au>Yin, Zhixiong</au><au>Liu, Wenjun</au><au>Zhong, Bo</au><au>Kan, Guangfeng</au><au>Wang, Xiaofei</au><au>Jiang, Jie</au><au>Shen, Zexiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation</atitle><jtitle>Advanced optical materials</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>12</volume><issue>25</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller than those of traditional bulky devices. However, phase manipulation by light propagating through atomic 2D materials is suppressed due to its sub‐nanometer thickness. Here, an approach is reported to realize reflection phase singularities by establishing a zero‐reflection point in a monolayer MoS2‐based multilayer system, which broadens topological study beyond polarization singularity. This is achieved through the creation of a multilayer Fabry‐Perot‐type interference, and a pronounced phase change in the reflected light is realized due to the high absorption of monolayer MoS2 in the studied wavelength range. As an application, a rapid, sensitive, and label‐free detection of SARS‐CoV‐2 (2019‐nCov) antigen is demonstrated with a detection limit of 10−12 M L−1 (62 pg ml−1) by using monolayer MoS2 based optical biosensor. In addition to offering a comprehensive study in phase singularity, efficient wavefront engineering based on the reflective system using materials is presented with atomic thickness which may greatly simplify optical architecture in flat optics, and promote its development toward compactness and integrated functions. Through the construction of a double‐dielectric layer/Si substrate, the creation of phase singularity by introducing zero‐reflection in monolayer MoS2 facilitates the fast and quantitative detection of infectious 2019‐nCov antigen. The topological phase singularity together with topological charge based on materials of atomic layers broadens the scope of flexible wavefront shaping beyond metastructures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202400429</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9182-335X</orcidid><orcidid>https://orcid.org/0000-0001-7432-7936</orcidid><orcidid>https://orcid.org/0000-0002-1310-7419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-09, Vol.12 (25), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3099982290
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Biosensors
Molybdenum disulfide
Monolayers
Multilayers
one port single‐mode resonator
Optics
Phase modulation
Reflection
Singularities
Thickness
topological charge
topological phase singularity
Two dimensional materials
Wave fronts
Wave propagation
zero‐reflection
title Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Absorbing%20Monolayer%20MoS2%20for%20a%20Large%20Reflection%20Phase%20Modulation&rft.jtitle=Advanced%20optical%20materials&rft.au=Wang,%20Yingying&rft.date=2024-09-01&rft.volume=12&rft.issue=25&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202400429&rft_dat=%3Cproquest_wiley%3E3099982290%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099982290&rft_id=info:pmid/&rfr_iscdi=true