Highly Absorbing Monolayer MoS2 for a Large Reflection Phase Modulation

Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-09, Vol.12 (25), p.n/a
Hauptverfasser: Wang, Yingying, Li, Zhonglin, Li, Xianglin, Gao, Kangyu, Yin, Zhixiong, Liu, Wenjun, Zhong, Bo, Kan, Guangfeng, Wang, Xiaofei, Jiang, Jie, Shen, Zexiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manipulation of wavefront lies at the core of next‐generation information technologies. Compared to metal and dielectric metasurfaces, atomic 2D materials exhibit excellent prospects toward fulfilling ultra‐thin thickness requirements in flat optics in wavefront shaping, with thickness much smaller than those of traditional bulky devices. However, phase manipulation by light propagating through atomic 2D materials is suppressed due to its sub‐nanometer thickness. Here, an approach is reported to realize reflection phase singularities by establishing a zero‐reflection point in a monolayer MoS2‐based multilayer system, which broadens topological study beyond polarization singularity. This is achieved through the creation of a multilayer Fabry‐Perot‐type interference, and a pronounced phase change in the reflected light is realized due to the high absorption of monolayer MoS2 in the studied wavelength range. As an application, a rapid, sensitive, and label‐free detection of SARS‐CoV‐2 (2019‐nCov) antigen is demonstrated with a detection limit of 10−12 M L−1 (62 pg ml−1) by using monolayer MoS2 based optical biosensor. In addition to offering a comprehensive study in phase singularity, efficient wavefront engineering based on the reflective system using materials is presented with atomic thickness which may greatly simplify optical architecture in flat optics, and promote its development toward compactness and integrated functions. Through the construction of a double‐dielectric layer/Si substrate, the creation of phase singularity by introducing zero‐reflection in monolayer MoS2 facilitates the fast and quantitative detection of infectious 2019‐nCov antigen. The topological phase singularity together with topological charge based on materials of atomic layers broadens the scope of flexible wavefront shaping beyond metastructures.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202400429