Investigating Removal of Carbamazepine by Helianthus annuus Plant Cells

Dependence on reclaimed wastewater and biosolids for agronomic use in semi-arid and arid regions is progressively increasing across the globe. The impact of contamination of treated water with residues of recalcitrant pharmaceuticals on the ecosystem is now one of the major environmental concerns. C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2024-10, Vol.235 (10), p.652, Article 652
Hauptverfasser: Srinivasan, Samyuktha, Srivastava, Smita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dependence on reclaimed wastewater and biosolids for agronomic use in semi-arid and arid regions is progressively increasing across the globe. The impact of contamination of treated water with residues of recalcitrant pharmaceuticals on the ecosystem is now one of the major environmental concerns. Common sunflower, Helianthus annuus ( H. annuus ), has been reported to remove one of the recalcitrant pharmaceuticals, carbamazepine (CBZ). However, it's potential to tolerate CBZ is not yet characterized. For this, the plant cell suspension system of H. annuus (6.67 g DWL -1 ) was used as a model system and within 6 h of exposure to CBZ (15 ppm), 39.47 ± 6.8% was found to be removed with initial removal rate of 0.987 ± 0.17 mg L −1  h −1 . The adsorption equilibrium data was fitted with the Freundlich isotherm and the removal kinetics of CBZ onto plant cells of  H. annuus was correlated well with Elovich kinetics. Also, no significant change in the viability and antioxidant levels (Ascorbate peroxidase and Glutathione peroxidase) was observed in the plant cells exposed to higher concentrations of CBZ (15 ppm), demonstrating high tolerance. The finding strongly indicates that in-vitro system of H. annuus holds significant promise as a robust platform for investigating the intricate mechanisms underlying its tolerance to CBZ. Graphical Abstract
ISSN:0049-6979
1573-2932
DOI:10.1007/s11270-024-07420-x