Minimising changes to audit when updating decision trees

Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Simmons, Anj, Barnett, Scott, Chaudhuri, Anupam, Singh, Sankhya, Sivasothy, Shangeetha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Simmons, Anj
Barnett, Scott
Chaudhuri, Anupam
Singh, Sankhya
Sivasothy, Shangeetha
description Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the number of changes to the tree as part of the objective function. We compare our algorithm to existing methods and show that it sits in a sweet spot between final accuracy and number of changes to audit.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098949433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098949433</sourcerecordid><originalsourceid>FETCH-proquest_journals_30989494333</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScCzEv1WQWxcXNvYT22aZoUvMS_H0r-AFOdzh3wQoJsKu0knLFSqJRCCH3B1nXUDB9dd49HTnf83awvkfiKXCbO5f4e0DP89TZ9OUO2_kLnqeISBu2vNsHYfnrmm3Pp9vxUk0xvDJSasaQo5-pAWG0UUYBwH_XB2Y7Nms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098949433</pqid></control><display><type>article</type><title>Minimising changes to audit when updating decision trees</title><source>Freely Accessible Journals</source><creator>Simmons, Anj ; Barnett, Scott ; Chaudhuri, Anupam ; Singh, Sankhya ; Sivasothy, Shangeetha</creator><creatorcontrib>Simmons, Anj ; Barnett, Scott ; Chaudhuri, Anupam ; Singh, Sankhya ; Sivasothy, Shangeetha</creatorcontrib><description>Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the number of changes to the tree as part of the objective function. We compare our algorithm to existing methods and show that it sits in a sweet spot between final accuracy and number of changes to audit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decision trees ; Greedy algorithms</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Simmons, Anj</creatorcontrib><creatorcontrib>Barnett, Scott</creatorcontrib><creatorcontrib>Chaudhuri, Anupam</creatorcontrib><creatorcontrib>Singh, Sankhya</creatorcontrib><creatorcontrib>Sivasothy, Shangeetha</creatorcontrib><title>Minimising changes to audit when updating decision trees</title><title>arXiv.org</title><description>Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the number of changes to the tree as part of the objective function. We compare our algorithm to existing methods and show that it sits in a sweet spot between final accuracy and number of changes to audit.</description><subject>Decision trees</subject><subject>Greedy algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScCzEv1WQWxcXNvYT22aZoUvMS_H0r-AFOdzh3wQoJsKu0knLFSqJRCCH3B1nXUDB9dd49HTnf83awvkfiKXCbO5f4e0DP89TZ9OUO2_kLnqeISBu2vNsHYfnrmm3Pp9vxUk0xvDJSasaQo5-pAWG0UUYBwH_XB2Y7Nms</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Simmons, Anj</creator><creator>Barnett, Scott</creator><creator>Chaudhuri, Anupam</creator><creator>Singh, Sankhya</creator><creator>Sivasothy, Shangeetha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240829</creationdate><title>Minimising changes to audit when updating decision trees</title><author>Simmons, Anj ; Barnett, Scott ; Chaudhuri, Anupam ; Singh, Sankhya ; Sivasothy, Shangeetha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30989494333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decision trees</topic><topic>Greedy algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Simmons, Anj</creatorcontrib><creatorcontrib>Barnett, Scott</creatorcontrib><creatorcontrib>Chaudhuri, Anupam</creatorcontrib><creatorcontrib>Singh, Sankhya</creatorcontrib><creatorcontrib>Sivasothy, Shangeetha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simmons, Anj</au><au>Barnett, Scott</au><au>Chaudhuri, Anupam</au><au>Singh, Sankhya</au><au>Sivasothy, Shangeetha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Minimising changes to audit when updating decision trees</atitle><jtitle>arXiv.org</jtitle><date>2024-08-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the number of changes to the tree as part of the objective function. We compare our algorithm to existing methods and show that it sits in a sweet spot between final accuracy and number of changes to audit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3098949433
source Freely Accessible Journals
subjects Decision trees
Greedy algorithms
title Minimising changes to audit when updating decision trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Minimising%20changes%20to%20audit%20when%20updating%20decision%20trees&rft.jtitle=arXiv.org&rft.au=Simmons,%20Anj&rft.date=2024-08-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098949433%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098949433&rft_id=info:pmid/&rfr_iscdi=true