Minimising changes to audit when updating decision trees
Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interpretable models are important, but what happens when the model is updated on new training data? We propose an algorithm for updating a decision tree while minimising the number of changes to the tree that a human would need to audit. We achieve this via a greedy approach that incorporates the number of changes to the tree as part of the objective function. We compare our algorithm to existing methods and show that it sits in a sweet spot between final accuracy and number of changes to audit. |
---|---|
ISSN: | 2331-8422 |