YOLOv4-Based Semiconductor Wafer Notch Detection Using Deep Learning and Image Enhancement Algorithms

This study designs a system to precisely detect the angle of wafers on an ion implanter's electrostatic chuck (ESC). In specific ion implantation processes, ions may penetrate deeper than intended because of the channeling effect, compromising the device performance. To address this issue, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of precision engineering and manufacturing 2024-09, Vol.25 (9), p.1909-1916
Hauptverfasser: Wang, Hao, Sim, Hyo Jun, Hwang, Jong Jin, Kwak, Sung Jin, Moon, Seung Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study designs a system to precisely detect the angle of wafers on an ion implanter's electrostatic chuck (ESC). In specific ion implantation processes, ions may penetrate deeper than intended because of the channeling effect, compromising the device performance. To address this issue, the system adjusts the tilt of the ESC and the twist angles of the wafer to control the ion beam direction. Utilizing a camera-based machine learning system, the system identifies the wafer notch to ensure an accurate alignment of the ESC. However, factors such as insufficient lighting and vibrations affect notch detection, which can degrade image quality. To overcome these issues, this study explored various image-enhancement techniques and evaluated the performance of object detection algorithms on enhanced images.
ISSN:2234-7593
2005-4602
DOI:10.1007/s12541-024-01092-7