A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs

We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Albrechtsen, Sandra, Jacobs, Raphael W, Knappe, Paul, Wollan, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Albrechtsen, Sandra
Jacobs, Raphael W
Knappe, Paul
Wollan, Paul
description We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3098382655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098382655</sourcerecordid><originalsourceid>FETCH-proquest_journals_30983826553</originalsourceid><addsrcrecordid>eNqNjrEKwjAUAIMgWLT_EHDRIRCTttZRRFFcHQshlLRNsX3te-n_26Ef4HTD3XArFimtTyJPlNqwmKiVUqrsrNJUR-x15WVj0ZbBoScbPPQcKl6jHRri42TJC0_QuYC-5AF4cXibpDiKzveAokLnlnjH1pX9kosXbtn-cf_cnmJAGCdHwbQwYT8ro-Ul17nK5oP_qh9HkDve</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098382655</pqid></control><display><type>article</type><title>A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs</title><source>Free E- Journals</source><creator>Albrechtsen, Sandra ; Jacobs, Raphael W ; Knappe, Paul ; Wollan, Paul</creator><creatorcontrib>Albrechtsen, Sandra ; Jacobs, Raphael W ; Knappe, Paul ; Wollan, Paul</creatorcontrib><description>We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Albrechtsen, Sandra</creatorcontrib><creatorcontrib>Jacobs, Raphael W</creatorcontrib><creatorcontrib>Knappe, Paul</creatorcontrib><creatorcontrib>Wollan, Paul</creatorcontrib><title>A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs</title><title>arXiv.org</title><description>We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu.</description><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrEKwjAUAIMgWLT_EHDRIRCTttZRRFFcHQshlLRNsX3te-n_26Ef4HTD3XArFimtTyJPlNqwmKiVUqrsrNJUR-x15WVj0ZbBoScbPPQcKl6jHRri42TJC0_QuYC-5AF4cXibpDiKzveAokLnlnjH1pX9kosXbtn-cf_cnmJAGCdHwbQwYT8ro-Ul17nK5oP_qh9HkDve</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Albrechtsen, Sandra</creator><creator>Jacobs, Raphael W</creator><creator>Knappe, Paul</creator><creator>Wollan, Paul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240827</creationdate><title>A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs</title><author>Albrechtsen, Sandra ; Jacobs, Raphael W ; Knappe, Paul ; Wollan, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30983826553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Albrechtsen, Sandra</creatorcontrib><creatorcontrib>Jacobs, Raphael W</creatorcontrib><creatorcontrib>Knappe, Paul</creatorcontrib><creatorcontrib>Wollan, Paul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrechtsen, Sandra</au><au>Jacobs, Raphael W</au><au>Knappe, Paul</au><au>Wollan, Paul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs</atitle><jtitle>arXiv.org</jtitle><date>2024-08-27</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_3098382655
source Free E- Journals
subjects Graphs
title A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20characterisation%20of%20graphs%20quasi-isometric%20to%20%5C(K_4%5C)-minor-free%20graphs&rft.jtitle=arXiv.org&rft.au=Albrechtsen,%20Sandra&rft.date=2024-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3098382655%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098382655&rft_id=info:pmid/&rfr_iscdi=true