A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs
We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the r...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu. |
---|---|
ISSN: | 2331-8422 |