A characterisation of graphs quasi-isometric to \(K_4\)-minor-free graphs

We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Albrechtsen, Sandra, Jacobs, Raphael W, Knappe, Paul, Wollan, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that there is a function \(f\) such that every graph with no \(K\)-fat \(K_4\) minor is \(f(K)\)-quasi-isometric to a graph with no \(K_4\) minor. This solves the \(K_4\)-case of a general conjecture of Georgakopoulos and Papasoglu. Our proof technique also yields a new short proof of the respective \(K_4^-\)-case, which was first established by Fujiwara and Papasoglu.
ISSN:2331-8422