Dichroic mirror pulses for optimized higher-order atomic Bragg diffraction
Increasing the sensitivity of light-pulse atom interferometers progressively relies on large-momentum transfer techniques. Precise control of such methods is imperative to exploit the full capabilities of these quantum sensors. One key element is the mitigation of deleterious effects such as parasit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing the sensitivity of light-pulse atom interferometers progressively relies on large-momentum transfer techniques. Precise control of such methods is imperative to exploit the full capabilities of these quantum sensors. One key element is the mitigation of deleterious effects such as parasitic paths deteriorating the interferometric signal. In this work, we present the experimental realization of dichroic mirror pulses for atom interferometry specifically designed for higher-order Bragg diffraction. Our approach selectively reflects resonant atom paths into the detected interferometer output, ensuring that these contribute to the signal with intent. Simultaneously, parasitic paths are efficiently transmitted by the mirror and not directed to the relevant interferometer outputs. This method effectively isolates the desired interferometric signal from noise induced by unwanted paths. It not only demonstrates enhanced control over the atomic trajectories but also represents a significant step forward in optimizing the performance of light-pulse atom interferometers for high-precision applications. |
---|---|
ISSN: | 2331-8422 |