A Down-Scaling Inversion Strategy for Retrieving Canopy Water Content from Satellite Hyperspectral Imagery

Vegetation canopy water content (CWC) crucially affects stomatal conductance and photosynthesis and, consequently, is a key state variable in advanced ecosystem models. Remote sensing has been shown to be an effective tool for retrieving CWCs. However, the retrieval of the CWC from satellite remote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-08, Vol.15 (8), p.1463
Hauptverfasser: Fang, Meihong, Hu, Xiangyan, Chen, Jing M, Zhao, Xueshiyi, Tang, Xuguang, Liu, Haijian, Xu, Mingzhu, Ju, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vegetation canopy water content (CWC) crucially affects stomatal conductance and photosynthesis and, consequently, is a key state variable in advanced ecosystem models. Remote sensing has been shown to be an effective tool for retrieving CWCs. However, the retrieval of the CWC from satellite remote sensing data is affected by the vegetation canopy structure and soil background. This study proposes a methodology that combines a modified spectral down-scaling model with a high-universality leaf water content inversion model to retrieve the CWC through constraining the impacts of canopy structure and soil background on CWC retrieval. First, canopy spectra acquired by satellite sensors were down-scaled to leaf reflectance spectra according to the probabilities of viewing the sunlit foliage (PT) and background (PG) and the estimated spectral multiple scattering factor (M). Then, leaf water content, or equivalent water thickness (EWT), was obtained from the down-scaled leaf reflectance spectra via a leaf-scale EWT inversion model calibrated with PROSPECT simulation data. Finally, the CWC was calculated as the product of the estimated leaf EWT and canopy leaf area index. Validation of this coupled model was performed using satellite-ground synchronous observation data across various vegetation types within the study area, affirming the model’s broad applicability. Results indicate that the modified spectral down-scaling model accurately retrieves leaf reflectance spectra, aligning closely with site-level measured spectra. Compared to the direct inversion approach, which performs poorly with Hyperion satellite images, the down-scale strategy notably excels. Specifically, the Similarity Water Index (SWI)-based canopy EWT coupled model achieved the most precise estimation, with a normalized Root Mean Square Error (nRMSE) of 15.28% and an adjusted R2 of 0.77, surpassing the performance of the best index Shortwave Angle Normalized Index (SANI)-based model (nRMSE = 15.61%, adjusted R2 = 0.52). Given its calibration using simulated data, this coupled model proved to be a potent method for extracting canopy EWT from satellite imagery, suggesting its applicability to retrieve other vegetative biochemical components from satellite data.
ISSN:1999-4907
1999-4907
DOI:10.3390/f15081463