Investigation of Calcium Phosphate Catalysts in Sodium Borohydride Methanolysis for Improved Hydrogen Production

In this study, calcium-rich resource minerals such as brushite, tricalcium phosphate (TCP), and hydroxyapatite were tested as catalysts for the methanolysis of alkaline solutions of NaBH4 to generate hydrogen H2. The synthesis of calcium phosphate compounds was characterized by means of X-ray powder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-08, Vol.14 (8), p.512
Hauptverfasser: Alsowayigh, Marwah M., Alsehli, Amal H., Alqahtani, Fahad, Abdulaziz, Fahad, Tounsi, Moncef, Alshaaer, Mazen, Alanazi, Abdulaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, calcium-rich resource minerals such as brushite, tricalcium phosphate (TCP), and hydroxyapatite were tested as catalysts for the methanolysis of alkaline solutions of NaBH4 to generate hydrogen H2. The synthesis of calcium phosphate compounds was characterized by means of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The hydrogen generation rate with the TCP catalyst (15,214 mL min−1 g−1) was higher than with the hydroxyapatite catalyst (12,437 mL min−1 g−1) and brushite catalyst (6210 mL min−1 g−1) for the methanolysis of 250 mg NaBH4 at 298 K using 25 mg of catalyst. The impact of TCP weight on hydrogen generation was studied. The methanolysis reaction led to a higher hydrogen volume generation over time with an increase in the weight of the TCP catalyst at a temperature of 308 K. The calculated activation energy for NaBH4 hydrolysis with the TCP catalyst was 23.944 kJ mol−1, suggesting the high catalytic activity of TCP. The values of enthalpy (ΔH) and entropy (ΔS) were calculated, and the results showed that ΔH was 21.28 kJ mol−1 and ΔS was −93.096 J·mol−1. ΔH was positive, meaning that the reaction was endothermic, and the negative ΔS meant a decrease in the disorder of the methanolysis reaction. The stability of the catalysis was tested in successive methanolysis tests. The catalyst’s efficiency decreased to 89% after four cycles.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal14080512