Vision-based adaptive LT sliding mode admittance control for collaborative robots with actuator saturation

In this paper, we propose a novel vision-based adaptive leakage-type (LT) sliding mode admittance control for actuator-constrained collaborative robots to realize the synchronous control of the precise path following and compliant interaction force. Firstly, we develop a vision-admittance-based mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2024-06, Vol.42 (6), p.1986-2003
Hauptverfasser: Huang, Cong, Zhu, Minglei, Song, Shijie, Zhao, Yuyang, Jiang, Jinmao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel vision-based adaptive leakage-type (LT) sliding mode admittance control for actuator-constrained collaborative robots to realize the synchronous control of the precise path following and compliant interaction force. Firstly, we develop a vision-admittance-based model to couple the visual feedback and force sensing in the image feature space so that a reference image feature trajectory can be obtained concerning the contact force command and predefined trajectory. Secondly, considering the system uncertainty, external disturbance, and torque constraints of collaborative robots in reality, we propose an adaptive sliding mode controller in the image feature space to perform precise trajectory tracking. This controller employs a leakage-type (LT) adaptive control law to reduce the side effects of system uncertainties without knowing the upper bound of system uncertainties. Moreover, an auxiliary dynamic is considered in this controller to overcome the joint torque constraints. Finally, we prove the convergence of the tracking error with the Lyapunov stability analysis and operate various semi-physical simulations compared to the conventional adaptive sliding mode and parallel vision/force controller to demonstrate the efficacy of the proposed controller. The simulation results show that compared with the controller mentioned above, the path following accuracy and interaction force control precision of the proposed controller increased by 50% and achieved faster convergence.
ISSN:0263-5747
1469-8668
DOI:10.1017/S0263574724000729