Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning
In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wen-Han, Hsieh Jen-Yuan, Chang |
description | In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3097619776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097619776</sourcerecordid><originalsourceid>FETCH-proquest_journals_30976197763</originalsourceid><addsrcrecordid>eNqNy0sKwjAUheEgCIq6hwuOC22ijToTbXUgFNS5pDXVSJtbk7Q-Vm8FF-DoDM7_dUifMhZ4swmlPTKy9ub7Pg05nU5ZnzRJ5VSp3kpf4LhmkKMB7q2TGPaYolMZLE0JGyNs1SYLSBppMiy_-aFO8YtFodwLHspdIXpWBRrhFGov0lehM3mGFWrXeqcaCTspjG7xkHRzUVg5-u2AjOPouNp6lcF7La073bA2ur1OzJ_zMJhzHrL_qg86gUyu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097619776</pqid></control><display><type>article</type><title>Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning</title><source>Free E- Journals</source><creator>Wen-Han, Hsieh ; Jen-Yuan, Chang</creator><creatorcontrib>Wen-Han, Hsieh ; Jen-Yuan, Chang</creatorcontrib><description>In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Euclidean geometry ; Grasping (robotics) ; Machine learning ; Modules ; Reagents ; Robot arms</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wen-Han, Hsieh</creatorcontrib><creatorcontrib>Jen-Yuan, Chang</creatorcontrib><title>Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning</title><title>arXiv.org</title><description>In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.</description><subject>Algorithms</subject><subject>Euclidean geometry</subject><subject>Grasping (robotics)</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Reagents</subject><subject>Robot arms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy0sKwjAUheEgCIq6hwuOC22ijToTbXUgFNS5pDXVSJtbk7Q-Vm8FF-DoDM7_dUifMhZ4swmlPTKy9ub7Pg05nU5ZnzRJ5VSp3kpf4LhmkKMB7q2TGPaYolMZLE0JGyNs1SYLSBppMiy_-aFO8YtFodwLHspdIXpWBRrhFGov0lehM3mGFWrXeqcaCTspjG7xkHRzUVg5-u2AjOPouNp6lcF7La073bA2ur1OzJ_zMJhzHrL_qg86gUyu</recordid><startdate>20240826</startdate><enddate>20240826</enddate><creator>Wen-Han, Hsieh</creator><creator>Jen-Yuan, Chang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240826</creationdate><title>Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning</title><author>Wen-Han, Hsieh ; Jen-Yuan, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30976197763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Euclidean geometry</topic><topic>Grasping (robotics)</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Reagents</topic><topic>Robot arms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wen-Han, Hsieh</creatorcontrib><creatorcontrib>Jen-Yuan, Chang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen-Han, Hsieh</au><au>Jen-Yuan, Chang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-08-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3097619776 |
source | Free E- Journals |
subjects | Algorithms Euclidean geometry Grasping (robotics) Machine learning Modules Reagents Robot arms |
title | Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20TD3%20for%207-DOF%20Robotic%20Arm%20Grasping:%20Overcoming%20Suboptimality%20with%20Exploration-Enhanced%20Contrastive%20Learning&rft.jtitle=arXiv.org&rft.au=Wen-Han,%20Hsieh&rft.date=2024-08-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3097619776%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097619776&rft_id=info:pmid/&rfr_iscdi=true |