Optimizing TD3 for 7-DOF Robotic Arm Grasping: Overcoming Suboptimality with Exploration-Enhanced Contrastive Learning

In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Wen-Han, Hsieh, Jen-Yuan, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In actor-critic-based reinforcement learning algorithms such as Twin Delayed Deep Deterministic policy gradient (TD3), insufficient exploration of the spatial space can result in suboptimal policies when controlling 7-DOF robotic arms. To address this issue, we propose a novel Exploration-Enhanced Contrastive Learning (EECL) module that improves exploration by providing additional rewards for encountering novel states. Our module stores previously explored states in a buffer and identifies new states by comparing them with historical data using Euclidean distance within a K-dimensional tree (KDTree) framework. When the agent explores new states, exploration rewards are assigned. These rewards are then integrated into the TD3 algorithm, ensuring that the Q-learning process incorporates these signals, promoting more effective strategy optimization. We evaluate our method on the robosuite panda lift task, demonstrating that it significantly outperforms the baseline TD3 in terms of both efficiency and convergence speed in the tested environment.
ISSN:2331-8422