Predicting Mechanical Properties of Concrete Using Equivalent Mortar: A Comparative Study
Comprehending the mechanical characteristics of concrete is paramount for its efficient deployment in construction. This investigation endeavors to predict these properties utilizing equivalent mortar, furthering previous inquiries on the topic. Literature suggests a viable approach to create concre...
Gespeichert in:
Veröffentlicht in: | Annales de chimie (Paris. 1914) 2023-10, Vol.47 (5), p.265-271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Comprehending the mechanical characteristics of concrete is paramount for its efficient deployment in construction. This investigation endeavors to predict these properties utilizing equivalent mortar, furthering previous inquiries on the topic. Literature suggests a viable approach to create concrete through a method employing both natural and crushed aggregates. This technique considers the corresponding mortar, amalgamated with crushed (SC) and dune sand (SD), as a novel mortar. Implementing this method could curtail the consumption of natural resources while conserving the mechanical attributes in both fresh (flow) and hardened states (strength and durability). This approach aims to anticipate the mechanical performance of concretes formulated from equivalent mortar data. Five mixtures were constituted to discern the optimal blend from a binary amalgamation of crushed coarse aggregates (30% fraction 3/8 and 70% fraction of 8/15) sized 3.8mm and 8.15mm, alongside five mixed sand percentages: (30% SC+70% SD), (40% SC+60% SD), (50% SC+50% SD), (60% SC+40% SD), and (70% SC+30% SD). The application of super plasticizer was investigated, and the compressive strength function of coarse aggregate was ascertained at intervals of 7, 14, and 28 days. The mechanical strength was determined at the 28-day mark. The empirical study indicates that density attains its zenith when a 40% mortar is incorporated into the concrete matrix. Conversely, with a 50% SC composition within the mixed sand, the mechanical strengths achieve acceptable values with moderate CS dosages. Specification tests reveal that incorporating 50% to 70% mortar into the concrete matrix can yield high-quality concrete. |
---|---|
ISSN: | 0151-9107 1958-5934 |
DOI: | 10.18280/acsm.470501 |