Invariant Tori and Periodic Orbits in the FitzHugh-Nagumo System

The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Cândido, Murilo R, Novaes, Douglas D, Sadri, Nasrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The FitzHugh-Nagumo system is a \(4\)-parameter family of \(3\)D vector field used for modeling neural excitation and nerve impulse propagation. The origin represents a Hopf-zero equilibrium in the FitzHugh-Nagumo system for two classes of parameters. In this paper, we employ recent techniques in averaging theory to investigate, besides periodic solutions, the bifurcation of invariant tori within the aforementioned families. We provide explicit generic conditions for the existence of these tori and analyze their stability properties. Furthermore, we employ the backward differentiation formula to solve the stiff differential equations and provide numerical simulations for each of the mentioned results.
ISSN:2331-8422