W-triviality of low dimensional manifolds

A space X is W -trivial if for every real vector bundle α over X the total Stiefel-Whitney class w ( α ) is 1. It follows from a result of Milnor that if X is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then X is not W -trivial. In this note we completely characterize W -trivial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-09, Vol.175 (1-2), p.499-512
Hauptverfasser: Bhattacharya, Aritra C., Kundu, Bikramjit, Naolekar, Aniruddha C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A space X is W -trivial if for every real vector bundle α over X the total Stiefel-Whitney class w ( α ) is 1. It follows from a result of Milnor that if X is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then X is not W -trivial. In this note we completely characterize W -trivial orientable connected closed smooth manifolds in dimensions 3, 5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be W -trivial.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-024-01575-x