W-triviality of low dimensional manifolds
A space X is W -trivial if for every real vector bundle α over X the total Stiefel-Whitney class w ( α ) is 1. It follows from a result of Milnor that if X is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then X is not W -trivial. In this note we completely characterize W -trivial...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2024-09, Vol.175 (1-2), p.499-512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A space
X
is
W
-trivial if for every real vector bundle
α
over
X
the total Stiefel-Whitney class
w
(
α
)
is 1. It follows from a result of Milnor that if
X
is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then
X
is not
W
-trivial. In this note we completely characterize
W
-trivial orientable connected closed smooth manifolds in dimensions 3, 5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be
W
-trivial. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-024-01575-x |