Root stacks and periodic decompositions

For an effective Cartier divisor D on a scheme X we may form an n th  root stack. Its derived category is known to have a semiorthogonal decomposition with components given by D and X . We show that this decomposition is 2 n -periodic. For  n = 2 this gives a purely triangulated proof of the existen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-09, Vol.175 (1-2), p.53-73
Hauptverfasser: Bodzenta, A., Donovan, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an effective Cartier divisor D on a scheme X we may form an n th  root stack. Its derived category is known to have a semiorthogonal decomposition with components given by D and X . We show that this decomposition is 2 n -periodic. For  n = 2 this gives a purely triangulated proof of the existence of a known spherical functor, namely the pushforward along the embedding of  D . For n > 2 we find a higher spherical functor in the sense of recent work of Dyckerhoff et al. ( N -spherical functors and categorification of Euler’s continuants. arXiv:2306.13350 , 2023). We use a realization of the root stack construction as a variation of GIT, which may be of independent interest.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-024-01574-y