Quot scheme and deformation quantization

Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-08, Vol.134 (2)
1. Verfasser: Biswas, Indranil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Proceedings of the Indian Academy of Sciences. Mathematical sciences
container_volume 134
creator Biswas, Indranil
description Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When r = 1 = d , then Q ( r , d ) = X ; this case was addressed earlier in Ben-Zvi and Biswas ( Lett. Math. Phys. 54 (2000) 73–82).
doi_str_mv 10.1007/s12044-024-00794-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3096659793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096659793</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-b6d4fca7549f02cf711316ffc3e87447c9b7547eb062ebe13b5ce25c3311ccfe3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AU8FL16iM5l8bI6y-AULIug5tGmiXdy227QXf71xK3gYZl7mYQYexi4RbhDA3CYUICUHkQuMlVwcsQVYQ9zolTrOs1DEJUpxys5S2gKglaQX7Pp16sYi-c-wC0XZ1kUdYjfsyrHp2mI_le3YfB_COTuJ5VcKF399yd4f7t_WT3zz8vi8vtvwHpUZeaVrGX1plLQRhI8GkVDH6CmsjJTG2yrvTKhAi1AFpEr5IJQnQvQ-Blqyq_luP3T7KaTRbbtpaPNLR2C1VtZYyhTNVOqHpv0Iwz-F4H6VuFmJy0rcQYkT9APd6VOH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096659793</pqid></control><display><type>article</type><title>Quot scheme and deformation quantization</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><creator>Biswas, Indranil</creator><creatorcontrib>Biswas, Indranil</creatorcontrib><description>Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When r = 1 = d , then Q ( r , d ) = X ; this case was addressed earlier in Ben-Zvi and Biswas ( Lett. Math. Phys. 54 (2000) 73–82).</description><identifier>ISSN: 0253-4142</identifier><identifier>EISSN: 0973-7685</identifier><identifier>DOI: 10.1007/s12044-024-00794-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Deformation ; Mathematics ; Mathematics and Statistics ; Riemann surfaces</subject><ispartof>Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2024-08, Vol.134 (2)</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-b6d4fca7549f02cf711316ffc3e87447c9b7547eb062ebe13b5ce25c3311ccfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12044-024-00794-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12044-024-00794-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Biswas, Indranil</creatorcontrib><title>Quot scheme and deformation quantization</title><title>Proceedings of the Indian Academy of Sciences. Mathematical sciences</title><addtitle>Proc Math Sci</addtitle><description>Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When r = 1 = d , then Q ( r , d ) = X ; this case was addressed earlier in Ben-Zvi and Biswas ( Lett. Math. Phys. 54 (2000) 73–82).</description><subject>Deformation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann surfaces</subject><issn>0253-4142</issn><issn>0973-7685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouK7-AU8FL16iM5l8bI6y-AULIug5tGmiXdy227QXf71xK3gYZl7mYQYexi4RbhDA3CYUICUHkQuMlVwcsQVYQ9zolTrOs1DEJUpxys5S2gKglaQX7Pp16sYi-c-wC0XZ1kUdYjfsyrHp2mI_le3YfB_COTuJ5VcKF399yd4f7t_WT3zz8vi8vtvwHpUZeaVrGX1plLQRhI8GkVDH6CmsjJTG2yrvTKhAi1AFpEr5IJQnQvQ-Blqyq_luP3T7KaTRbbtpaPNLR2C1VtZYyhTNVOqHpv0Iwz-F4H6VuFmJy0rcQYkT9APd6VOH</recordid><startdate>20240824</startdate><enddate>20240824</enddate><creator>Biswas, Indranil</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20240824</creationdate><title>Quot scheme and deformation quantization</title><author>Biswas, Indranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-b6d4fca7549f02cf711316ffc3e87447c9b7547eb062ebe13b5ce25c3311ccfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deformation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Indranil</creatorcontrib><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Indranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quot scheme and deformation quantization</atitle><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle><stitle>Proc Math Sci</stitle><date>2024-08-24</date><risdate>2024</risdate><volume>134</volume><issue>2</issue><issn>0253-4142</issn><eissn>0973-7685</eissn><abstract>Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When r = 1 = d , then Q ( r , d ) = X ; this case was addressed earlier in Ben-Zvi and Biswas ( Lett. Math. Phys. 54 (2000) 73–82).</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12044-024-00794-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0253-4142
ispartof Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2024-08, Vol.134 (2)
issn 0253-4142
0973-7685
language eng
recordid cdi_proquest_journals_3096659793
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences
subjects Deformation
Mathematics
Mathematics and Statistics
Riemann surfaces
title Quot scheme and deformation quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quot%20scheme%20and%20deformation%20quantization&rft.jtitle=Proceedings%20of%20the%20Indian%20Academy%20of%20Sciences.%20Mathematical%20sciences&rft.au=Biswas,%20Indranil&rft.date=2024-08-24&rft.volume=134&rft.issue=2&rft.issn=0253-4142&rft.eissn=0973-7685&rft_id=info:doi/10.1007/s12044-024-00794-2&rft_dat=%3Cproquest_sprin%3E3096659793%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096659793&rft_id=info:pmid/&rfr_iscdi=true