Quot scheme and deformation quantization

Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-08, Vol.134 (2)
1. Verfasser: Biswas, Indranil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When r = 1 = d , then Q ( r , d ) = X ; this case was addressed earlier in Ben-Zvi and Biswas ( Lett. Math. Phys. 54 (2000) 73–82).
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-024-00794-2