Quot scheme and deformation quantization
Let X be a compact connected Riemann surface, and let Q ( r , d ) denote the quot scheme parametrizing the torsion quotients of O X ⊕ r of degree d . Given a projective structure P on X , we show that the cotangent bundle T ∗ U of a certain nonempty Zariski open subset U ⊂ Q ( r , d ) , equipped wit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-08, Vol.134 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a compact connected Riemann surface, and let
Q
(
r
,
d
)
denote the quot scheme parametrizing the torsion quotients of
O
X
⊕
r
of degree
d
. Given a projective structure
P
on
X
, we show that the cotangent bundle
T
∗
U
of a certain nonempty Zariski open subset
U
⊂
Q
(
r
,
d
)
, equipped with the natural Liouville symplectic form, admits a canonical deformation quantization. When
r
=
1
=
d
, then
Q
(
r
,
d
)
=
X
; this case was addressed earlier in Ben-Zvi and Biswas (
Lett. Math. Phys.
54
(2000) 73–82). |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-024-00794-2 |