Band gap of ion-doped La2NiMnO6 nanoparticles

We have studied theoretically the magnetization M and the band gap energy E g in dependence on temperature, size and ion doping concentration in the double perovskite La 2 NiMnO 6 (LNMO)—bulk and nanoparticles. LNMO is a ferromagnetic semiconductor. Therefore, it is appropriate to use for describing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2024, Vol.97 (8)
Hauptverfasser: Apostolov, A. T., Apostolova, I. N., Wesselinowa, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have studied theoretically the magnetization M and the band gap energy E g in dependence on temperature, size and ion doping concentration in the double perovskite La 2 NiMnO 6 (LNMO)—bulk and nanoparticles. LNMO is a ferromagnetic semiconductor. Therefore, it is appropriate to use for describing its properties the s - d ( f ) model. The method for the calculation of M and E g is the Green’s function theory within we are able to make a finite temperature analysis of the excitation spectrum and of all physical quantities. The temperature-dependent Matsubara Green’s function formalism can be used for describing the temperature-dependent behavior of realistic systems in thermal equilibrium. M increases with decreasing the nanoparticle size. E g decreases with increasing temperature. For nanoparticles, it is smaller than that of bulk LNMO. Doping with Sr ions at the La site reduces M and enhances E g . The band gap decreases by Sc ion doping at the La site. The substitution with different ions at the Ni site can also tune E g . For example, doping with Fe or Sc ion increases E g , whereas by Co, doping E g decreases. Substitution by the same ion at different sites, A or B (La or Ni) leads to different behavior of the band gap. It is shown that Sr-, Ba-, Ca-, and Y-doped LNMO NPs with a band gap of ∼ 1.4 eV are appropriate for application in solar cells. Comparison to the existing experimental data is made. Graphic abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/s10051-024-00769-2