A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems

While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2024-10, Vol.43 (10), p.6415-6436
Hauptverfasser: Huang, Sifan, Liu, Junzhu, Qian, Guobing, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6436
container_issue 10
container_start_page 6415
container_title Circuits, systems, and signal processing
container_volume 43
creator Huang, Sifan
Liu, Junzhu
Qian, Guobing
Wang, Xin
description While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.
doi_str_mv 10.1007/s00034-024-02752-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3096430017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3096430017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7b485d869006747b84632d1f826158b8102cf2230a1beffae575984555cf9e913</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKf_gE8Bn6s3SdMmj2P4BX7BJvgW0i6ZHW1Tkwy2_97MCr75cDlw-Z1zuQehSwLXBKC8CQDA8gzoYUpOM3mEJoQzknFRimM0SVuRgSAfp-gshA0AkbmkE_Qyw2_eDc7HxvU6Gvysd0237fDSRd3iueuG1uySem_6mMg9nrVr55v42WHrPF4M2geDF_sQTRfO0YnVbTAXvzpF73e3y_lD9vR6_zifPWU1BYhZWeWCr0QhAYoyLyuRF4yuiBW0IFxUggCtLaUMNKmMtdrwkkuRc85rK40kbIquxtzBu6-tCVFt3Nb36aRiIIucpQfLRNGRqr0LwRurBt902u8VAXXoTY29qdSb-ulNyWRioykkuF8b_xf9j-sbqqFvdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096430017</pqid></control><display><type>article</type><title>A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Huang, Sifan ; Liu, Junzhu ; Qian, Guobing ; Wang, Xin</creator><creatorcontrib>Huang, Sifan ; Liu, Junzhu ; Qian, Guobing ; Wang, Xin</creatorcontrib><description>While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-024-02752-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustics ; Adaptive algorithms ; Adaptive filters ; Adaptive systems ; Algorithms ; Circuits and Systems ; Complex variables ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Error analysis ; Instrumentation ; Signal processing ; Signal,Image and Speech Processing ; Simulation ; Sparsity ; Steady state models ; System identification ; Variables</subject><ispartof>Circuits, systems, and signal processing, 2024-10, Vol.43 (10), p.6415-6436</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7b485d869006747b84632d1f826158b8102cf2230a1beffae575984555cf9e913</cites><orcidid>0000-0003-0470-0154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-024-02752-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-024-02752-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Sifan</creatorcontrib><creatorcontrib>Liu, Junzhu</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.</description><subject>Acoustics</subject><subject>Adaptive algorithms</subject><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Complex variables</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Instrumentation</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Simulation</subject><subject>Sparsity</subject><subject>Steady state models</subject><subject>System identification</subject><subject>Variables</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYMoOKf_gE8Bn6s3SdMmj2P4BX7BJvgW0i6ZHW1Tkwy2_97MCr75cDlw-Z1zuQehSwLXBKC8CQDA8gzoYUpOM3mEJoQzknFRimM0SVuRgSAfp-gshA0AkbmkE_Qyw2_eDc7HxvU6Gvysd0237fDSRd3iueuG1uySem_6mMg9nrVr55v42WHrPF4M2geDF_sQTRfO0YnVbTAXvzpF73e3y_lD9vR6_zifPWU1BYhZWeWCr0QhAYoyLyuRF4yuiBW0IFxUggCtLaUMNKmMtdrwkkuRc85rK40kbIquxtzBu6-tCVFt3Nb36aRiIIucpQfLRNGRqr0LwRurBt902u8VAXXoTY29qdSb-ulNyWRioykkuF8b_xf9j-sbqqFvdw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Huang, Sifan</creator><creator>Liu, Junzhu</creator><creator>Qian, Guobing</creator><creator>Wang, Xin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0470-0154</orcidid></search><sort><creationdate>20241001</creationdate><title>A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems</title><author>Huang, Sifan ; Liu, Junzhu ; Qian, Guobing ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7b485d869006747b84632d1f826158b8102cf2230a1beffae575984555cf9e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Adaptive algorithms</topic><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Complex variables</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Instrumentation</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Simulation</topic><topic>Sparsity</topic><topic>Steady state models</topic><topic>System identification</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sifan</creatorcontrib><creatorcontrib>Liu, Junzhu</creatorcontrib><creatorcontrib>Qian, Guobing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sifan</au><au>Liu, Junzhu</au><au>Qian, Guobing</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>43</volume><issue>10</issue><spage>6415</spage><epage>6436</epage><pages>6415-6436</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-024-02752-9</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0470-0154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2024-10, Vol.43 (10), p.6415-6436
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_3096430017
source SpringerLink Journals - AutoHoldings
subjects Acoustics
Adaptive algorithms
Adaptive filters
Adaptive systems
Algorithms
Circuits and Systems
Complex variables
Electrical Engineering
Electronics and Microelectronics
Engineering
Error analysis
Instrumentation
Signal processing
Signal,Image and Speech Processing
Simulation
Sparsity
Steady state models
System identification
Variables
title A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proportionate%20Maximum%20Total%20Complex%20Correntropy%20Algorithm%20for%20Sparse%20Systems&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Huang,%20Sifan&rft.date=2024-10-01&rft.volume=43&rft.issue=10&rft.spage=6415&rft.epage=6436&rft.pages=6415-6436&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-024-02752-9&rft_dat=%3Cproquest_cross%3E3096430017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096430017&rft_id=info:pmid/&rfr_iscdi=true