A Proportionate Maximum Total Complex Correntropy Algorithm for Sparse Systems

While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2024-10, Vol.43 (10), p.6415-6436
Hauptverfasser: Huang, Sifan, Liu, Junzhu, Qian, Guobing, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the practical application of adaptive filters has indeed garnered substantial attention, two pressing issues persist that have a profound impact on their performance—system sparsity and the presence of contaminated Gaussian impulsive noise. In this research paper, we propose a novel approach to tackle both of these issues simultaneously by introducing the concept of a proportionate matrix. Specifically, we present a proportionate maximum total complex correntropy algorithm based on the errors-in-variables model. The paper presents a theoretical analysis of the steady-state weight error power under the influence of impulsive noise. Furthermore, it discusses the performance comparison in system identification and highlights the robustness of the proposed algorithm. To validate its effectiveness, a simulation involving stereophonic acoustic echo cancellation is conducted, and the results confirm the clear advantages of the proposed Proportionate Maximum Total Complex Correntropy algorithm.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-024-02752-9