Modeling Irrational Behavior of Residential End Users Using Non-Stationary Gaussian Processes

Demand response (DR) plays a critical role in ensuring efficient electricity consumption and optimal use of network assets. Yet, existing DR models often overlook a crucial element, the irrational behaviour of electricity end users. In this work, we propose a price-responsive model that incorporates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2024-09, Vol.15 (5), p.4636-4648
Hauptverfasser: Dinh, Nam Trong, Karimi-Arpanahi, Sahand, Yuan, Rui, Pourmousavi, S. Ali, Guo, Mingyu, Liisberg, Jon A. R., Lemos-Vinasco, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Demand response (DR) plays a critical role in ensuring efficient electricity consumption and optimal use of network assets. Yet, existing DR models often overlook a crucial element, the irrational behaviour of electricity end users. In this work, we propose a price-responsive model that incorporates key aspects of end-user irrationality, specifically loss aversion, time inconsistency, and bounded rationality. To this end, we first develop a framework that uses Multiple Seasonal-Trend decomposition using Loess (MSTL) and non-stationary Gaussian processes to model the randomness in the electricity consumption by residential consumers. The impact of this model is then evaluated through a community battery storage (CBS) business model. Additionally, we apply a chance-constrained optimisation model for CBS operation that deals with the unpredictability of the end-user irrationality. Our simulations using real-world data show that the proposed DR model provides a more realistic estimate of end-user price-responsive behaviour when considering irrationality. Compared to a deterministic model that cannot fully take into account the irrational behaviour of end users, the chance-constrained CBS operation model yields an additional 19% revenue. Lastly, the business model reduces the electricity costs of solar end users by 11%.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2024.3382771