Development of APCVD BSG and POCl3 Codiffusion Process for Double-Side TOPCon Solar Cell Precursor Fabrication

This article presents a commercially viable process for fabricating a high-quality double-side tunnel oxide passivating contact (DS-TOPCon) cell precursor using atmospheric pressure chemical vapor deposition deposited boron silicate glass and ex situ POCl 3 diffusion in a single high-temperature ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2024-09, Vol.14 (5), p.727-736
Hauptverfasser: Choi, Wook-Jin, Ok, Young-Woo, Madani, Keeya, Upadhyaya, Vijaykumar D, Upadhyaya, Ajay D, Rounsaville, Brian, Padhamnath, Pradeep, Luna, Gabby De, Arcebal, John Derek, Rohatgi, Ajeet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a commercially viable process for fabricating a high-quality double-side tunnel oxide passivating contact (DS-TOPCon) cell precursor using atmospheric pressure chemical vapor deposition deposited boron silicate glass and ex situ POCl 3 diffusion in a single high-temperature step, eliminating the need for additional masking and diffusion processes. A two-tier temperature profile was developed, involving a preannealing at above 900 °C in nitrogen ambient followed by POCl 3 diffusion at 840 °C. We investigated the effect of varying preannealing temperatures, ranging from 875 to 950 °C, on the passivation quality and metal-Si contact properties of both n -TOPCon and p -TOPCon layers. The resultant DS-TOPCon cell precursor after silicon nitride passivation exhibited an excellent iV OC of close to 730 mV. In addition, a rapid asymmetric poly-Si thinning technique, developed in this work, enabled adjustment of the front n + poly-Si thickness while maintaining the rear p + poly-Si thickness. Two types of DS-TOPCon cell architectures can be fabricated: i) full-area thin ( 40 nm) n -TOPCon layer on the front and ii) selective-area thick ( 200 nm) n -TOPCon fingers underneath the metal grid. Device simulations suggest that full-area DS-TOPCon cell with 40 nm n + poly-Si and selective-area DS-TOPCon cell with 200 nm n + poly fingers on the front, fabricated from our current DS-TOPCon cell precursor, can achieve cell efficiencies of 22.1% and 23.5%, respectively. Detailed power loss analysis and device simulation reveal that further improvements in material and device parameters have the potential to push the cell efficiencies of DS-TOPCon cell structure beyond 25%, making it a promising alternative to fabricate high-efficiency next-generation solar cells at low cost.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2024.3423814