Weighted fractional Poincaré inequalities via isoperimetric inequalities

Our main result is a weighted fractional Poincaré–Sobolev inequality improving the celebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperimetric inequality and is new even in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024-11, Vol.63 (8), Article 205
Hauptverfasser: Myyryläinen, Kim, Pérez, Carlos, Weigt, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our main result is a weighted fractional Poincaré–Sobolev inequality improving the celebrated estimate by Bourgain–Brezis–Mironescu. This also yields an improvement of the classical Meyers–Ziemer theorem in several ways. The proof is based on a fractional isoperimetric inequality and is new even in the non-weighted setting. We also extend the celebrated Poincaré–Sobolev estimate with A p weights of Fabes–Kenig–Serapioni by means of a fractional type result in the spirit of Bourgain–Brezis–Mironescu. Examples are given to show that the corresponding L p -versions of weighted Poincaré inequalities do not hold for p > 1 .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-024-02813-6