Shape‐Programmable Adaptive Multi‐Material Microswimmers for Biomedical Applications
Flagellated microorganisms can swim at low Reynolds numbers and adapt to changes in their environment. Specifically, the flagella can switch their shapes or modes through gene expression. In recent years, efforts have changed to achieve adaptive microswimmers mimicking real microorganisms from tradi...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-08, Vol.34 (34), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flagellated microorganisms can swim at low Reynolds numbers and adapt to changes in their environment. Specifically, the flagella can switch their shapes or modes through gene expression. In recent years, efforts have changed to achieve adaptive microswimmers mimicking real microorganisms from traditional rigid microswimmers. However, even though some adaptive microswimmers achieved by hydrogels have emerged, the swimming behaviors of the microswimmers before and after the environment‐induced deformations are not predicted in a systematic standardized way. In this work, experiments, finite element analysis, and dynamic modeling are presented together to realize a complete understanding of these adaptive microswimmers. The multi‐material adaptive microswimmers used in this study are fabricated by photolithography and two‐photon polymerization. The above three parts are cross‐verified proving the success of using such methods, facilitating the bio‐applications with shape‐programmable and even swimming performance‐programmable microswimmers. The newly fabricated microswimmer also shows an improved velocity of 11.8 body lengths per second. Moreover, an application of targeted object delivery using the proposed microswimmer is successfully demonstrated. Finally, cytotoxicity tests are performed to prove the potential for using the proposed microswimmer for biomedical applications.
A systematic and standardized approach is proposed for helical adaptive microswimmers, including material property testing, finite element modeling, dynamic calculations, and experimental cross‐verifications. A model helical adaptive microswimmer is studied and coupled with a functional end‐effector resulting in a microswimmer with dual advanced functions for adaptive locomotion and micromanipulation. The investigated dual‐functional microswimmer shows great potential for future biomedical applications. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202401876 |