New optimized Lcd codes and quantum codes using constacyclic codes over a non-local collection of rings Ak
In this article, we find several novel and efficient quantum error-correcting codes ( Q ecc ) by studying the structure of constacyclic ( C cc ), cyclic ( C c ), and negacyclic codes ( N C c ) over the ring A k = Z p r 1 , r 2 , ⋯ , r k / ⟨ ( r b ( m b + 1 ) - r b ) , r l r b = r b r l = 0 , b ≠ l ⟩...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2024-08, Vol.23 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we find several novel and efficient quantum error-correcting codes (
Q
ecc
) by studying the structure of constacyclic (
C
cc
), cyclic (
C
c
), and negacyclic codes (
N
C
c
) over the ring
A
k
=
Z
p
r
1
,
r
2
,
⋯
,
r
k
/
⟨
(
r
b
(
m
b
+
1
)
-
r
b
)
,
r
l
r
b
=
r
b
r
l
=
0
,
b
≠
l
⟩
, where
p
=
q
m
for m,
m
b
∈
N
,
m
b
|
-
1
+
q
∀
b
,
l
∈
1
to
k
,
q
≥
3
is a prime,
Z
p
is a finite field. We define distance-preserving gray map
δ
k
. Moreover, we determine the quantum singleton defect (
Q
SD) of
Q
ecc
, which indicates their overall quality. We compare our codes with existing codes in recent publications. The rings discussed by Kong et al. (EPJ Quantum Technol 10:1–16, 2023), Suprijanto et al. (Quantum codes constructed from cyclic codes over the ring
F
q
+
vF
q
+
v
2
F
q
+
v
3
F
q
+
v
4
F
q
, pp 1–14, 2021.
arXiv: 2112.13488v2 [cs.IT]
), and Dinh et al. (IEEE Access 8:194082–194091, 2020) are specific cases of our work. Furthermore, we construct several novel and optimum linear complementary dual (Lcd) codes over
A
k
. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-024-04489-5 |