Constraining the Generalized Tolman-Oppenheimer-Volkoff (GTOV) equation with Bayesian analysis
In this work, we constrain the values of the parameters of the Generalized Tolman-Oppenheimer-Volkoff (GTOV) equation through Bayesian inference. We use the mass and radius data from the Neutron Star Interior Composition Explorer (NICER) for PSR J0740+6620 and PSR J0030+0451, as well as the mass, ra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we constrain the values of the parameters of the Generalized Tolman-Oppenheimer-Volkoff (GTOV) equation through Bayesian inference. We use the mass and radius data from the Neutron Star Interior Composition Explorer (NICER) for PSR J0740+6620 and PSR J0030+0451, as well as the mass, radius, and dimensionless tidal deformability from the gravitational wave (GW) events GW190814 and GW170817. We use two distinct parameterizations of the extended non-linear Walecka model (eNLW) with and without hyperons. The GTOV employed for the study contains additional free parameters with different physical motivations. Two possible scenarios are considered in our analysis: conservative and speculative. In the first case, we take into account the most reliable neutron star (NS) data from NICER and the GW170817 event. In the second case, we consider the possibility that the compact object with a mass of \(2.54 M_{\odot}\) in the GW190814 event is an NS. Our findings show significant improvements in the physical quantities analyzed, leading to better agreement with the observational data compared to the results obtained using the TOV equation. |
---|---|
ISSN: | 2331-8422 |