Tunable interfacial Rashba spin-orbit coupling in asymmetric Al\(_x\)In\(_{1-x}\)Sb/InSb/CdTe quantum well heterostructures
The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al\(_x\)In\(_{1-x}\)Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The manipulation of Rashba-type spin-orbit coupling (SOC) in molecular beam epitaxy-grown Al\(_x\)In\(_{1-x}\)Sb/InSb/CdTe quantum well heterostructures is reported. The effective band bending provides robust two-dimensional quantum confinement, while the unidirectional built-in electric field from the asymmetric hetero-interfaces results in pronounced Rashba SOC strength. By tuning the Al concentration in the top Al\(_x\)In\(_{1-x}\)Sb barrier layer, the optimal structure with \(x = 0.15\) shows the largest Rashba coefficient of 0.23 eV-Angstrom. and the highest low-temperature electron mobility of 4400 cm\(^2\)/Vs . Quantitative investigations of the weak anti-localization effect further confirm the dominant D'yakonov-Perel (DP) spin relaxation mechanism during charge-to-spin conversion. These findings highlight the significance of quantum well engineering in shaping magneto-resistance responses, and narrow bandgap semiconductor-based heterostructures may offer a reliable platform for energy-efficient spintronic applications. |
---|---|
ISSN: | 2331-8422 |