A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations

In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4&am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-09, Vol.47 (14), p.11611-11641
Hauptverfasser: Long, Yanping, Cui, Jingjing, Huang, Zhengge, Wu, Xiaowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11641
container_issue 14
container_start_page 11611
container_title Mathematical methods in the applied sciences
container_volume 47
creator Long, Yanping
Cui, Jingjing
Huang, Zhengge
Wu, Xiaowen
description In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4=E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods.
doi_str_mv 10.1002/mma.10146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3094913386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094913386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2576-2b4432b4ece963836e85c1f174ded501a985af829a707f7ebd7e21c7b99799323</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLEItZ0fx8uq4k9qxQbWlpNMUldJnNpOaXccgTNyEgxly2beaPTNe9JD6JqSO0oIm3WdCgtNshM0oUSIiCY8O0UTQjmJEkaTc3Th3IYQklPKJmiY485UutZQ4caqSkPvvz4-C-XCQXuwyusdYNU2xmq_7nBtLHam3em-wX4NuDTd0MI-aL8ZG-UD21fYW9W7wTjAnfJW7zFsx-BkeneJzmrVOrj60yl6e7h_XTxFy5fH58V8GZUs5VnEiiSJw4ASRBbncQZ5WtKa8qSCKiVUiTxVdc6E4oTXHIqKA6MlL4TgQsQsnqKbo-9gzXYE5-XGjLYPkTImIhE0jvMsULdHqrTGOQu1HKzulD1ISuRPoTIUKn8LDezsyL7rFg7_g3K1mh8_vgEN1Hm2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094913386</pqid></control><display><type>article</type><title>A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations</title><source>Wiley-Blackwell Journals</source><creator>Long, Yanping ; Cui, Jingjing ; Huang, Zhengge ; Wu, Xiaowen</creator><creatorcontrib>Long, Yanping ; Cui, Jingjing ; Huang, Zhengge ; Wu, Xiaowen</creatorcontrib><description><![CDATA[In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1&#x0002B;{A}_2\overline{X}{B}_2&#x0002B;{A}_3{X}&#x0005E;T{B}_3&#x0002B;{A}_4{X}&#x0005E;H{B}_4&#x0003D;E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods.]]></description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10146</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>complex conjugate and transpose matrix equation ; Conjugates ; Convergence ; hierarchical identification principle ; Iterative algorithms ; modified gradient‐based iterative algorithm ; real representation</subject><ispartof>Mathematical methods in the applied sciences, 2024-09, Vol.47 (14), p.11611-11641</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2576-2b4432b4ece963836e85c1f174ded501a985af829a707f7ebd7e21c7b99799323</cites><orcidid>0000-0003-2294-972X ; 0000-0002-2677-013X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Long, Yanping</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Huang, Zhengge</creatorcontrib><creatorcontrib>Wu, Xiaowen</creatorcontrib><title>A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations</title><title>Mathematical methods in the applied sciences</title><description><![CDATA[In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1&#x0002B;{A}_2\overline{X}{B}_2&#x0002B;{A}_3{X}&#x0005E;T{B}_3&#x0002B;{A}_4{X}&#x0005E;H{B}_4&#x0003D;E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods.]]></description><subject>complex conjugate and transpose matrix equation</subject><subject>Conjugates</subject><subject>Convergence</subject><subject>hierarchical identification principle</subject><subject>Iterative algorithms</subject><subject>modified gradient‐based iterative algorithm</subject><subject>real representation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLEItZ0fx8uq4k9qxQbWlpNMUldJnNpOaXccgTNyEgxly2beaPTNe9JD6JqSO0oIm3WdCgtNshM0oUSIiCY8O0UTQjmJEkaTc3Th3IYQklPKJmiY485UutZQ4caqSkPvvz4-C-XCQXuwyusdYNU2xmq_7nBtLHam3em-wX4NuDTd0MI-aL8ZG-UD21fYW9W7wTjAnfJW7zFsx-BkeneJzmrVOrj60yl6e7h_XTxFy5fH58V8GZUs5VnEiiSJw4ASRBbncQZ5WtKa8qSCKiVUiTxVdc6E4oTXHIqKA6MlL4TgQsQsnqKbo-9gzXYE5-XGjLYPkTImIhE0jvMsULdHqrTGOQu1HKzulD1ISuRPoTIUKn8LDezsyL7rFg7_g3K1mh8_vgEN1Hm2</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Long, Yanping</creator><creator>Cui, Jingjing</creator><creator>Huang, Zhengge</creator><creator>Wu, Xiaowen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2294-972X</orcidid><orcidid>https://orcid.org/0000-0002-2677-013X</orcidid></search><sort><creationdate>20240930</creationdate><title>A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations</title><author>Long, Yanping ; Cui, Jingjing ; Huang, Zhengge ; Wu, Xiaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2576-2b4432b4ece963836e85c1f174ded501a985af829a707f7ebd7e21c7b99799323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>complex conjugate and transpose matrix equation</topic><topic>Conjugates</topic><topic>Convergence</topic><topic>hierarchical identification principle</topic><topic>Iterative algorithms</topic><topic>modified gradient‐based iterative algorithm</topic><topic>real representation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yanping</creatorcontrib><creatorcontrib>Cui, Jingjing</creatorcontrib><creatorcontrib>Huang, Zhengge</creatorcontrib><creatorcontrib>Wu, Xiaowen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yanping</au><au>Cui, Jingjing</au><au>Huang, Zhengge</au><au>Wu, Xiaowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>47</volume><issue>14</issue><spage>11611</spage><epage>11641</epage><pages>11611-11641</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract><![CDATA[In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1&#x0002B;{A}_2\overline{X}{B}_2&#x0002B;{A}_3{X}&#x0005E;T{B}_3&#x0002B;{A}_4{X}&#x0005E;H{B}_4&#x0003D;E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods.]]></abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10146</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2294-972X</orcidid><orcidid>https://orcid.org/0000-0002-2677-013X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-09, Vol.47 (14), p.11611-11641
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3094913386
source Wiley-Blackwell Journals
subjects complex conjugate and transpose matrix equation
Conjugates
Convergence
hierarchical identification principle
Iterative algorithms
modified gradient‐based iterative algorithm
real representation
title A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20gradient%E2%80%90based%20iterative%20algorithm%20for%20solving%20the%20complex%20conjugate%20and%20transpose%20matrix%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Long,%20Yanping&rft.date=2024-09-30&rft.volume=47&rft.issue=14&rft.spage=11611&rft.epage=11641&rft.pages=11611-11641&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10146&rft_dat=%3Cproquest_cross%3E3094913386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094913386&rft_id=info:pmid/&rfr_iscdi=true