A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations
In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4&am...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-09, Vol.47 (14), p.11611-11641 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations
A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4=E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10146 |