A modified gradient‐based iterative algorithm for solving the complex conjugate and transpose matrix equations

In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4&am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-09, Vol.47 (14), p.11611-11641
Hauptverfasser: Long, Yanping, Cui, Jingjing, Huang, Zhengge, Wu, Xiaowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first develop the modified gradient‐based iterative (MGI) method for the complex conjugate and transpose matrix equations A1XB1+A2X‾B2+A3XTB3+A4XHB4=E$$ {A}_1X{B}_1+{A}_2\overline{X}{B}_2+{A}_3{X}^T{B}_3+{A}_4{X}^H{B}_4=E $$. By adopting the updated technique, we can make full use of the latest information to compute the next result, which leads to a faster convergence rate. In theory, we apply the real representation of a complex matrix and the vec‐operator to prove the convergence properties. Furthermore, we extend the MGI algorithm to solve the generalized complex conjugate and transpose matrix equations. Then, the necessary and sufficient conditions for convergence of the MGI algorithm are presented. Lastly, three numerical examples are introduced to testify the efficiency of our methods.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10146