A Hermitian refinement of symplectic Clifford analysis

In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure J on the canonical symplectic manifold (R2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators Ds$$ {D}_s $$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-09, Vol.47 (14), p.11473-11489
Hauptverfasser: Eelbode, David, Muarem, Guner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure J on the canonical symplectic manifold (R2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators Ds$$ {D}_s $$ and Dt$$ {D}_t $$ (in the sense of Habermann), leading to a u(n)$$ \mathfrak{u}(n) $$‐invariant system of equations on R2n$$ {\mathrm{\mathbb{R}}}^{2n} $$. We discuss the solution space for this system, culminating in a Fischer decomposition for the space of (harmonic) polynomials on R2n$$ {\mathrm{\mathbb{R}}}^{2n} $$ with values in the symplectic spinors. To make this decomposition explicit, we will construct the associated embedding factors using a transvector algebra.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10138