A Hermitian refinement of symplectic Clifford analysis
In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure J on the canonical symplectic manifold (R2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators Ds$$ {D}_s $$...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-09, Vol.47 (14), p.11473-11489 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we develop the Hermitian refinement of symplectic Clifford analysis, by introducing a complex structure
J on the canonical symplectic manifold
(R2n,ω0)$$ \left({\mathrm{\mathbb{R}}}^{2n},{\omega}_0\right) $$. This gives rise to two symplectic Dirac operators
Ds$$ {D}_s $$ and
Dt$$ {D}_t $$ (in the sense of Habermann), leading to a
u(n)$$ \mathfrak{u}(n) $$‐invariant system of equations on
R2n$$ {\mathrm{\mathbb{R}}}^{2n} $$. We discuss the solution space for this system, culminating in a Fischer decomposition for the space of (harmonic) polynomials on
R2n$$ {\mathrm{\mathbb{R}}}^{2n} $$ with values in the symplectic spinors. To make this decomposition explicit, we will construct the associated embedding factors using a transvector algebra. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10138 |