Combinatorics of Exterior Peaks on Pattern-Avoiding Symmetric Transversals
Let S T λ ( τ ) denote the set of symmetric transversals of a self-conjugate Young diagram λ which avoid the permutation pattern τ . Given two permutations τ = τ 1 τ 2 … τ n of { 1 , 2 , … , n } and σ = σ 1 σ 2 … σ m of { 1 , 2 , … , m } , the direct sum of τ and σ , denoted by τ ⊕ σ , is the permut...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2024-09, Vol.28 (3), p.977-1002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
T
λ
(
τ
)
denote the set of symmetric transversals of a self-conjugate Young diagram
λ
which avoid the permutation pattern
τ
. Given two permutations
τ
=
τ
1
τ
2
…
τ
n
of
{
1
,
2
,
…
,
n
}
and
σ
=
σ
1
σ
2
…
σ
m
of
{
1
,
2
,
…
,
m
}
, the
direct sum
of
τ
and
σ
, denoted by
τ
⊕
σ
, is the permutation
τ
1
τ
2
…
τ
n
(
σ
1
+
n
)
(
σ
2
+
n
)
…
(
σ
m
+
n
)
. We establish an exterior peak set preserving bijection between
S
T
λ
(
321
⊕
τ
)
and
S
T
λ
(
213
⊕
τ
)
for any pattern
τ
and any self-conjugate Young diagram
λ
. Our result is a refinement of part of a result of Bousquet-Mélou–Steingrímsson for pattern-avoiding symmetric transversals. As applications, we derive several enumerative results concerning pattern-avoiding reverse alternating involutions, including two conjectured equalities posed by Barnabei–Bonetti–Castronuovo–Silimbani. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-023-00664-0 |